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INTRODUCTION:	THE	FIVE-STEP
PROGRAM

Welcome!
I	know	that	preparing	for	the	Advanced	Placement	(AP)	Physics	exam	can	seem
like	a	daunting	task.	There’s	a	lot	of	material	to	learn,	and	some	of	it	can	be
rather	challenging.	But	I	also	know	that	preparing	for	the	AP	exam	is	much
easier—and	much	more	enjoyable—if	you	do	it	with	a	friendly	guide.	So	let	me
introduce	myself;	my	name	is	Greg,	and	I’ll	be	your	friendly	guide	for	this
journey.

Why	This	Book?
To	understand	what	makes	this	book	unique,	you	should	first	know	a	little	bit
about	who	I	am.	I	have	taught	all	versions	of	AP	Physics	over	the	past	two
decades,	helping	more	than	90%	of	my	Physics	C	students	garner	5s	on	the
exam.	I	am	also	an	AP	Physics	table	leader—which	means	I	set	the	rubrics	for
the	AP	exams	and	supervise	their	scoring.

I	know,	from	my	own	experiences	and	from	talking	with	countless	other
students	and	teachers,	what	you	don’t	need	in	a	review	book.	You	don’t	need	to
be	overwhelmed	with	unimportant,	technical	details;	you	don’t	need	to	read
confusing	explanations	of	arcane	topics;	you	don’t	need	to	be	bored	with	a	dull
text.

Instead,	what	I	think	you	do	need—and	what	this	book	provides—are	the
following:

•			A	text	that’s	written	in	clear,	simple	language.
•			A	thorough	review	of	every	topic	you	need	to	know	for	the	AP	exam.



•			Lots	of	problem-solving	tips	and	strategies.
•			An	introduction	to	the	student-tested	Five-Step	Program	to	Mastering	the	AP
Physics	Exam.

Organization	of	the	Book:	The	Five-Step	Program
You	will	be	taking	a	lengthy,	comprehensive	exam	this	May.	You	want	to	be	well
prepared	enough	that	the	exam	takes	on	the	feel	of	a	command	performance,	not
a	trial	by	fire.	Following	the	Five-Step	program	is	the	best	way	to	structure	your
preparation.

Step	1	:	Set	Up	Your	Study	Program
Physics	does	not	lend	itself	well	to	cramming.	Success	on	the	AP	exam	is
invariably	the	result	of	diligent	practice	over	the	course	of	months,	not	the	result
of	an	all-nighter	on	the	eve	of	exam	day.	Step	1	gives	you	the	background	and
structure	you	need	before	you	even	start	exam	preparation.

Step	2	:	Determine	Your	Test	Readiness
I	have	included	a	diagnostic	test,	of	course,	broken	down	by	topic.	But	more
important	to	your	preparation	are	the	fundamentals	quizzes	in	Chapter	4	.	These
quizzes,	a	unique	feature	of	the	5	Steps	to	a	5	program,	are	different	from	test-
style	problems.

A	problem	on	the	AP	exam	usually	requires	considerable	problem	solving	or
critical	thinking	skills.	Rare	is	the	AP	question	that	asks	about	straightforward
facts	that	you	can	memorize—you’ll	get	maybe	two	of	those	on	the	entire	70-
question	multiple-choice	test.	Rather	than	asking	you	to	spit	out	facts,	the	AP
exam	asks	you	to	use	the	facts	you	know	to	reason	deeply	about	a	physical
situation.	But	if	you	don’t	know	the	fundamental	facts,	you	certainly	won’t	be
able	to	reason	deeply	about	anything!

Thus,	a	good	place	to	start	your	test	preparation	is	by	quizzing	yourself.	Find
out	what	fundamental	facts	you	know,	and	which	you	need	to	know.	The	5	Steps
fundamentals	quizzes	will	diagnose	your	areas	of	strength	and	weakness.	Once
you	can	answer	every	question	on	a	fundamentals	quiz	quickly	and	accurately,
you	are	ready	for	deeper	questions	that	will	challenge	you	on	the	AP	exam.

Step	3	:	Develop	Strategies	for	Success
Yes,	yes,	I	know	you’ve	been	listening	to	general	test-taking	advice	for	most	of



your	life.	Yet,	I	have	physics-specific	advice	for	you.	An	AP	physics	test	requires
a	dramatically	different	approach	than	does	a	state	standards	test	or	an	SAT.

I	start	you	with	the	secret	weapon	in	attacking	an	AP	test:	memorizing
equations.	I	explain	why	you	should	memorize,	then	I	suggest	some	ways	to
make	the	learning	process	smoother.	Next,	I	move	on	to	discuss	the	major	types
of	questions	you’ll	see	on	the	AP	exam,	and	how	to	approach	each	with
confidence.

Finally,	I	present	you	with	drills	on	some	of	the	most	common	physics
situations	tested	on	the	AP	exams.	These	exercises	will	allow	you	to	conquer	any
fear	or	uncertainty	you	may	have	about	your	skills.

Step	4	:	Review	the	Knowledge	You	Need	to	Score	High
This	is	a	comprehensive	review	of	all	the	topics	on	the	AP	exam.	Now,	you’ve
probably	been	in	an	AP	Physics	class	all	year;	you’ve	likely	read1	your	textbook.
This	review	is	meant	to	be	just	that—review	,	in	a	readable	format,	and	focused
exclusively	on	the	AP	exam.

These	review	chapters	are	appropriate	both	for	quick	skimming,	to	remind
yourself	of	salient	points,	and	for	in-depth	study,	working	through	each	practice
problem.	I	do	not	go	into	nearly	as	much	detail	as	a	standard	textbook;	but	the
advantage	of	this	lack	of	detail	is	that	you	can	focus	only	on	those	issues
germane	to	the	AP	Physics	exams.

Step	5	:	Build	Your	Test-Taking	Confidence
Here	is	your	full-length	practice	test.	Unlike	other	practice	tests	you	may	take,
this	one	comes	with	thorough	explanations.	One	of	the	most	important	elements
in	learning	physics	is	making,	and	then	learning	from,	mistakes.	I	don’t	just	tell
you	what	you	got	wrong;	I	explain	why	your	answer	is	wrong,	and	how	to	do	the
problem	correctly.	It’s	okay	to	make	a	mistake	here,	because	if	you	do,	you
won’t	make	that	same	mistake	again	on	that	Monday	in	mid-May.

The	Graphics	Used	in	This	Book
To	emphasize	particular	skills	and	strategies,	I	use	several	icons	throughout	this
book.	An	icon	in	the	margin	will	alert	you	that	you	should	pay	particular
attention	to	the	accompanying	text.	I	use	these	three	icons:



1.	This	icon	points	out	a	very	important	concept	or	fact	that	you	should	not	pass
over.

2.	This	icon	calls	your	attention	to	a	problem-solving	strategy	that	you	may	want
to	try.

3.	This	icon	indicates	a	tip	that	you	might	find	useful.

Boldfaced	words	indicate	terms	that	are	included	in	the	glossary	at	the	end	of
the	book.	Boldface	is	also	used	to	indicate	the	answer	to	a	sample	problem
discussed	in	the	test.
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CHAPTER 	 1

How	to	Approach	Your	AP	Physics	Course

IN	THIS	CHAPTER

Summary:	Recognize	the	difference	between	truly	understanding	physics	and	just	doing	well	in	your
physics	class.

Key	Ideas
		Focus	on	increasing	your	knowledge	of	physics,	not	on	pleasing	your	teacher.
		Don’t	spend	more	than	10	minutes	at	one	time	on	a	problem	without	getting
anywhere—come	back	to	it	later	if	you	don’t	get	it.
		Form	a	study	group;	your	classmates	can	help	you	learn	physics	better.
		If	you	don’t	understand	something,	ask	your	teacher	for	help.
		Don’t	cram;	although	you	can	memorize	equations,	the	skills	you	need	to
solve	physics	problems	can’t	be	learned	overnight.

Before	we	even	dive	into	the	nitty-gritty	of	the	AP	Physics	exam,	it’s	important
for	you	to	know	that	the	AP	exam	is	an	authentic	physics	test.	What	this	means
is	that	it’s	not	possible	to	“game”	this	test—in	order	to	do	well,	you	must	know
your	physics	.	Therefore,	the	purpose	of	this	book	is	twofold:
(1)	to	teach	you	the	ways	in	which	the	AP	exam	tests	your	physics	knowledge,

and
(2)	to	give	you	a	review	of	the	physics	topics	that	will	be	tested—and	to	give



you	some	hints	on	how	to	approach	these	topics.
Everyone	who	takes	the	AP	exam	has	just	completed	an	AP	Physics	course.

Recognize	that	your	physics	course	is	the	place	to	start	your	exam
preparation!	Whether	or	not	you	are	satisfied	with	the	quality	of	your	course	or
your	teacher,	the	best	way	to	start	preparing	for	the	exam	is	by	doing	careful,
attentive	work	in	class	all	year	long.

Okay,	for	many	readers,	we’re	preaching	to	the	choir.	You	don’t	want	to	hear
about	your	physics	class;	you	want	the	specifics	about	the	AP	exam.	If	that’s	the
case,	go	ahead	and	turn	to	Chapter	2	,	and	get	started	on	your	exam-specific
preparation.	But	we	think	that	you	can	get	even	more	out	of	your	physics	class
than	you	think	you	can.	Read	these	pieces	of	time-tested	advice,	follow	them,
and	we	promise	you’ll	feel	more	comfortable	about	your	class	and	about	the	AP
exam.

Ignore	Your	Grade
This	must	be	the	most	ridiculous	statement	you’ve	ever	read.	But	it	may	also	be
the	most	important	of	these	suggestions.	Never	ask	yourself	or	your	teacher
“Can	I	have	more	points	on	this	assignment?”	or	“Is	this	going	to	be	on	the
test?”	You’ll	worry	so	much	about	giving	the	teacher	merely	what	she	or	he
wants	that	you	won’t	learn	physics	in	the	way	that’s	best	for	you.	Whether	your
score	is	perfect	or	near	zero,	ask,	“Did	I	really	understand	all	aspects	of	these
problems?”

Remember,	the	AP	exam	tests	your	physics	knowledge.	If	you	understand
physics	thoroughly,	you	will	have	no	trouble	at	all	on	the	AP	test.	But,	while	you
may	be	able	to	argue	yourself	a	better	grade	in	your	physics	class	,	even	if	your
comprehension	is	poor,	the	AP	readers	are	not	so	easily	moved.

If	you	take	this	advice—if	you	really,	truly	ignore	your	grade	and	focus	on
physics—your	grade	will	come	out	in	the	wash.	You’ll	find	that	you	got	a	very
good	grade	after	all,	because	you	understood	the	subject	so	well.	But	you	won’t
care	,	because	you’re	not	worried	about	your	grade!

Don’t	Bang	Your	Head	Against	a	Brick	Wall
Our	meaning	here	is	figurative,	although	there	are	literal	benefits	also.	Never
spend	more	than	10	minutes	or	so	staring	at	a	problem	without	getting



somewhere.	If	you	honestly	have	no	idea	what	to	do	at	some	stage	of	a	problem,
STOP.	Put	the	problem	away.	Physics	has	a	way	of	becoming	clearer	after	you
take	a	break.

On	the	same	note,	if	you’re	stuck	on	some	algebra,	don’t	spend	forever
trying	to	find	what	you	know	is	a	trivial	mistake,	say	a	missing	negative	sign	or
some	such	thing.	Put	the	problem	away,	come	back	in	an	hour,	and	start	from
scratch.	This	will	save	you	time	in	the	long	run.

And	finally,	if	you’ve	put	forth	a	real	effort,	you’ve	come	back	to	the
problem	many	times	and	you	still	can’t	get	it:	relax.	Ask	the	teacher	for	the
solution,	and	allow	yourself	to	be	enlightened.	You	will	not	get	a	perfect	score
on	every	problem.	But	you	don’t	care	about	your	grade,	remember?

Work	with	Other	People
When	you	put	a	difficult	problem	aside	for	a	while,	it	always	helps	to	discuss	the
problem	with	others.	Form	study	groups.	Have	a	buddy	in	class	with	whom	you
are	consistently	comparing	solutions.

Although	you	may	be	able	to	do	all	your	work	in	every	other	class	without
help,	we	have	never	met	a	student	who	is	capable	of	solving	every	physics
problem	on	his	or	her	own.	It	is	not	shameful	to	ask	for	help.	Nor	is	it	dishonest
to	seek	assistance—as	long	as	you’re	not	copying,	or	allowing	a	friend	to	carry
you	through	the	course.	Group	study	is	permitted	and	encouraged	in	virtually
every	physics	class	around	the	globe.

Ask	Questions	When	Appropriate
We	know	your	physics	teacher	may	seem	mean	or	unapproachable,	but	in	reality,
physics	teachers	do	want	to	help	you	understand	their	subject.	If	you	don’t
understand	something,	don’t	be	afraid	to	ask.	Chances	are	that	the	rest	of	the
class	has	the	same	question.	If	your	question	is	too	basic	or	requires	too	much
class	time	to	answer,	the	teacher	will	tell	you	so.

Sometimes	the	teacher	will	not	answer	you	directly,	but	will	give	you	a	hint,
something	to	think	about	so	that	you	might	guide	yourself	to	your	own	answer.
Don’t	interpret	this	as	a	refusal	to	answer	your	question.	You	must	learn	to	think
for	yourself,	and	your	teacher	is	helping	you	develop	the	analytical	skills	you
need	for	success	in	physics.



Keep	an	Even	Temper
A	football	team	should	not	give	up	because	they	allow	an	early	field	goal.
Similarly,	you	should	not	get	upset	at	poor	performance	on	a	test	or	problem	set.
No	one	expects	you	to	be	perfect.	Learn	from	your	mistakes,	and	move	on—it’s
too	long	a	school	year	to	let	a	single	physics	assignment	affect	your	emotional
state.

On	the	same	note,	however,	a	football	team	should	not	celebrate	victory
because	it	scores	a	first-quarter	touchdown.	You	might	have	done	well	on	this
test,	but	there’s	the	rest	of	a	nine-month	course	to	go.	Congratulate	yourself,	then
concentrate	on	the	next	assignment.

Don’t	Cram
Yes,	we	know	that	you	got	an	“A”	on	your	history	final	because,	after	you	slept
through	class	all	semester,	you	studied	for	15	straight	hours	the	day	before	the
test	and	learned	everything.	And,	yes,	we	know	you	are	willing	to	do	the	same
thing	this	year	for	physics.	We	warn	you,	both	from	our	and	from	others’
experience:	it	won’t	work	.	Physics	is	not	about	memorization	and	regurgitation.
Sure,	there	are	some	equations	you	need	to	memorize.	But	problem-solving
skills	cannot	be	learned	overnight.

Furthermore,	physics	is	cumulative.	The	topics	you	discuss	in	December	rely
on	the	principles	you	learned	in	September.	If	you	don’t	understand	basic	vector
analysis	and	free-body	diagrams,	how	can	you	understand	the	relationship
between	an	electric	field	(which	is	a	vector	quantity)	and	an	electric	force,	or	the
multitude	of	other	vector	quantities	that	you	will	eventually	study?

So,	the	answer	is	to	keep	up	with	the	course.	Spend	some	time	on	physics
every	night,	even	if	that	time	is	only	a	couple	of	minutes,	even	if	you	have	no
assignment	due	the	next	day.	Spread	your	“cram	time”	over	the	entire	semester.

Never	Forget,	Physics	is	“Phun”
The	purpose	of	all	these	problems,	these	equations,	and	these	exams	is	to	gain
knowledge	about	physics—a	deeper	understanding	of	how	the	natural	world
works.	Don’t	be	so	caught	up	in	the	grind	of	your	coursework	that	you	fail	to	say
“Wow!”	occasionally.	Some	of	the	things	you’re	learning	are	truly	amazing.
Physics	gives	insight	into	some	of	humankind’s	most	critical	discoveries,	our



most	powerful	inventions,	and	our	most	fundamental	technologies.	Enjoy
yourself.	You	have	an	opportunity	to	emerge	from	your	physics	course	with
wonderful	and	useful	knowledge,	and	unparalleled	intellectual	insight.	Do	it.



CHAPTER 	 2

What	You	Need	to	Know	About	the	AP
Physics	C	Exams

IN	THIS	CHAPTER

Summary:	Learn	what	topics	are	tested,	how	the	test	is	scored,	and	basic	test-taking	information.

Key	Ideas
		Most	colleges	will	award	credit	for	a	score	of	4	or	5,	some	for	a	3.
		Multiple-choice	questions	account	for	half	of	your	final	score.
		There	is	no	penalty	for	guessing	on	the	multiple-choice	questions.	You	should
answer	every	question.
		Free-response	questions	account	for	half	of	your	final	score.
		Your	composite	score	on	the	two	test	sections	is	converted	to	a	score	on	the	1-
to-5	scale.

Background	Information
The	AP	Physics	exam	was	first	offered	by	the	College	Board	in	1954.	Since
then,	the	number	of	students	taking	the	test	has	grown	rapidly.	In	2015,	more
than	70,000	students	took	at	least	one	of	the	AP	Physics	C	exams,	and	those



numbers	go	up	every	year.

Some	Frequently	Asked	Questions	About	the	AP
Physics	C	Exams

Why	Should	I	Take	an	AP	Physics	Exam?
Many	of	you	take	the	AP	Physics	exam	because	you	are	seeking	college	credit.
The	majority	of	colleges	and	universities	will	award	you	some	sort	of	credit	for
scoring	a	4	or	a	5.	A	smaller	number	of	schools	will	even	accept	a	3	on	the	exam.
This	means	you	are	one	or	two	courses	closer	to	graduation	before	you	even	start
college!

Therefore,	one	compelling	reason	to	take	the	AP	exam	is	economic.	How
much	does	a	college	course	cost,	even	at	a	relatively	inexpensive	school?	You’re
talking	several	thousand	dollars.	If	you	can	save	those	thousands	of	dollars	by
paying	less	than	a	hundred	dollars	now,	why	not	do	so?

Even	if	you	do	not	score	high	enough	to	earn	college	credit,	the	fact	that	you
elected	to	enroll	in	AP	courses	tells	admission	committees	that	you	are	a	high
achiever	and	serious	about	your	education.	In	recent	years,	about	60%	of
students	have	scored	a	3	or	higher	on	their	AP	Physics	C	exam.

You’ll	hear	a	whole	lot	of	misinformation	about	AP	credit	policies.	Don’t
believe	anything	a	friend	(or	even	an	adult)	tells	you;	instead,	find	out	for
yourself.	A	good	way	to	learn	about	the	AP	credit	policy	of	the	school	you’re
interested	in	is	to	look	it	up	on	the	College	Board’s	official	Web	site,	at
http://collegesearch.collegeboard.com/apcreditpolicy/index.jsp	.	Even	better,
contact	the	registrar’s	office	or	the	physics	department	chairman	at	the	college
directly.

What	Are	the	Different	AP	Physics	Courses?
You	can	take	various	AP	Physics	courses.	They	differ	in	both	the	range	of	topics
covered	and	the	level	at	which	those	topics	are	tested.	Here’s	the	rundown:

Physics	1	and	Physics	2	(Algebra	Based)
Physics	1	is	intended	to	simulate	the	first	semester	of	the	standard	algebra-based
college	physics	course.	It	covers	classical	mechanics,	waves,	and	circuits.
Physics	2	is	intended	to	simulate	the	second	semester	of	the	college	course,
covering	electromagnetism,	thermodynamics,	fluids,	and	atomic	physics.
Although	they	mimic	semester	courses	in	college,	each	of	these	is	a	full-year

http://collegesearch.collegeboard.com/apcreditpolicy/index.jsp


high	school	course.
When	the	College	Board	says	“algebra	based,”	they	mean	it—not	only	is	no

calculus	necessary,	but	no	mathematics	beyond	definitions	of	the	basic	trig
functions	are	required.	Most	of	the	Physics	1	and	2	exams	require	verbal,	not
mathematical,	responses.

Physics	1	in	particular	is	ideal	for	ALL	college-bound	high	school	students.
For	those	who	intend	to	major	in	math	or	the	heavy-duty	sciences,	Physics	1	and
Physics	2	serve	as	perfect	introduction	to	college-level	work.	For	those	who
want	nothing	to	do	with	physics	after	high	school,	Physics	1	and	Physics	2	are
terrific	terminal	courses—you	get	exposure	to	many	facets	of	physics	at	a
rigorous	yet	understandable	level.

Physics	C
These	courses	are	ONLY	for	those	who	have	already	taken	a	solid	introductory
physics	course	and	are	considering	a	career	in	math	or	science.	Some	schools
teach	Physics	C	as	a	follow-up	to	Physics	1,	but	as	long	as	you’ve	had	a	rigorous
introduction	to	the	subject,	that	introduction	does	not	have	to	be	at	the	AP	level.

Physics	C	is	two	separate	courses:	(1)	Newtonian	Mechanics,	and	(2)
Electricity	and	Magnetism.	Of	course,	the	Physics	1	and	2	courses	cover	these
topics	as	well.	However,	the	C	courses	go	into	greater	depth	and	detail.	The
problems	are	more	involved,	and	they	demand	a	higher	level	of	conceptual
understanding.	You	can	take	either	or	both	90-minute	Physics	C	exams.

The	C	courses	require	some	calculus.	Although	much	of	the	material	can	be
handled	without	it,	you	should	be	taking	a	good	calculus	course	concurrently.

Is	Physics	C	Better	than	Physics	1/2?	Should	I	Take	more	than
One	Exam?
We	strongly	recommend	taking	only	the	exam	that	your	high	school	AP	course
prepared	you	for.	Physics	C	is	not	considered	“better”	than	Physics	1	in	the	eyes
of	colleges	and	scholarship	committees;	they	are	different	courses	with	different
intended	audiences.	It	is	far	better	to	do	well	on	the	exam	that	your	class
prepared	you	for	than	to	do	poorly	on	multiple	exams.

What	Is	the	Format	of	the	Exam?
Table	2.1	summarizes	the	format	of	the	AP	Physics	C	exams.

Table	2.1	AP	Physics	C	exams

AP	Physics	C	–	Mechanics



AP	Physics	C	–	Electricity	and	Magnetism

Who	Writes	the	AP	Physics	Exam?
Development	of	each	AP	exam	is	a	multiyear	effort	that	involves	many
education	and	testing	professionals	and	students.	At	the	heart	of	the	effort	is	the
AP	Physics	Development	Committee,	a	group	of	college	and	high-school
physics	teachers	who	are	typically	asked	to	serve	for	three	years.	The	committee
and	other	physics	teachers	create	a	large	pool	of	multiple-	choice	questions.	With
the	help	of	the	testing	experts	at	Educational	Testing	Service	(ETS),	these
questions	are	then	pre-tested	with	college	students	for	accuracy,	appropriateness,
clarity,	and	assurance	that	there	is	only	one	possible	answer.	The	results	of	this
pre-testing	allow	each	question	to	be	categorized	by	degree	of	difficulty.	After
several	more	months	of	development	and	refinement,	Section	I	of	the	exam	is
ready	to	be	administered.

The	free-response	questions	that	make	up	Section	II	go	through	a	similar
process	of	creation,	modification,	pre-testing,	and	final	refinement	so	that	the
questions	cover	the	necessary	areas	of	material	and	are	at	an	appropriate	level	of
difficulty	and	clarity.	The	committee	also	makes	a	great	effort	to	construct	a	free-
response	exam	that	will	allow	for	clear	and	equitable	grading	by	the	AP	readers.

At	the	conclusion	of	each	AP	reading	and	scoring	of	exams,	the	exam	itself
and	the	results	are	thoroughly	evaluated	by	the	committee	and	by	ETS.	In	this
way,	the	College	Board	can	use	the	results	to	make	suggestions	for	course
development	in	high	schools	and	to	plan	future	exams.

What	Topics	Appear	on	the	Exam?
The	College	Board,	after	consulting	with	physics	teachers	at	all	levels,	develops
a	curriculum	that	covers	material	that	college	professors	expect	to	cover	in	their



first-year	classes.	Based	on	this	outline	of	topics,	the	multiple-choice	exams	are
written	such	that	those	topics	are	covered	in	proportion	to	their	importance	to	the
expected	understanding	of	the	student.

Confused?	Suppose	that	faculty	consultants	agree	that,	say,	atomic	and
nuclear	physics	is	important	to	the	physics	curriculum,	maybe	to	the	tune	of
10%.	If	10%	of	the	curriculum	is	devoted	to	atomic	and	nuclear	physics,	then
you	can	expect	roughly	10%	of	the	exam	will	address	atomic	and	nuclear
physics.	This	includes	both	the	multiple-choice	and	the	free-response	sections—
so	a	topic	that	is	not	tested	in	the	free-response	section	will	have	extra	multiple-
choice	questions	to	make	up	the	difference.

The	following	are	the	general	outlines	for	the	AP	Physics	curriculum	and
exams.	Remember	this	is	just	a	guide,	and	each	year	the	exam	differs	slightly	in
the	percentages.

What	Types	of	Questions	Are	Asked	on	the	Exam?
The	multiple-choice	questions	tend	to	focus	either	on	your	understanding	of
concepts	or	on	your	mastery	of	equations	and	their	meaning.	Here’s	an	example
of	a	“concept”	multiple-choice	question.

Which	of	the	following	is	an	expression	of	conservation	of	charge?



(A)		Kirchoff’s	loop	rule
(B)		Kirchoff’s	junction	rule
(C)		Ohm’s	law
(D)		Snell’s	law
(E)		Kinetic	theory	of	gases

The	answer	is	B	.	Kirchoff’s	junction	rule	states	that	whatever	charge	comes	in
must	come	out.	If	you	don’t	remember	Kirchoff’s	junction	rule,	turn	to	Chapter
19	,	Circuits.

And	here’s	an	example	of	an	“equation”	multiple-choice	question.

If	the	separation	between	plates	in	a	parallel-plate	capacitor	is	tripled,	what
happens	to	the	capacitance?

(A)		It	is	reduced	by	a	factor	of	9.
(B)		It	is	reduced	by	a	factor	of	3.
(C)		It	remains	the	same.
(D)		It	increases	by	a	factor	of	3.
(E)		It	increases	by	a	factor	of	9.

The	answer	is	B	.	For	this	kind	of	question,	you	either	remember	the	equation	for
the	capacitance	of	a	parallel-plate	capacitor,

or	you	don’t.	For	help,	turn	to	Chapter	6	,	Memorizing	Equations	in	the	Shower.
You	are	given	a	sheet	that	contains	a	bunch	of	physical	constants	(like	the

mass	of	a	proton),	SI	units,	and	trigonometric	values	(like	“tan	45°	=	1”).	All	in
all,	this	sheet	is	pretty	useless—you’ll	probably	only	refer	to	it	during	the	course
of	the	test	if	you	need	to	look	up	an	obscure	constant.	That	doesn’t	happen	as
often	as	you	might	think.

The	free-response	questions	take	15	minutes	apiece	to	answer,	and	they	test
both	your	understanding	of	concepts	and	your	mastery	of	equations.	Some	of	the
free-response	questions	ask	you	to	design	or	interpret	the	results	of	an
experimental	setup;	others	are	more	theoretical.	Luckily,	in	addition	to	the



constant	sheet,	you	will	also	get	a	sheet	that	contains	every	equation	you	will
ever	need.	You	still	need	to	have	your	equations	memorized!	It	is	not	useful	to
hunt	through	the	equation	sheet	trying	to	find	the	one	you	need,	any	more	than
it’s	a	useful	writing	strategy	to	hunt	randomly	through	the	dictionary	trying	to
find	an	appropriate	word.

We	talk	in	much	more	detail	about	both	the	multiple-choice	and	the	free-
response	sections	of	the	test	later,	in	Step	5	,	so	don’t	worry	if	this	is	all	a	bit
overwhelming	now.

Who	Grades	My	AP	Physics	Exam?
Every	June,	a	group	of	physics	teachers	gathers	for	a	week	to	assign	grades	to
your	hard	work.	Each	of	these	“readers”	spends	a	day	or	so	getting	trained	on
one	question—and	one	question	only.	Because	each	reader	becomes	an	expert	on
that	question,	and	because	each	exam	book	is	anonymous,	this	process	provides
a	consistent	and	unbiased	scoring	of	that	question.

During	a	typical	day	of	grading,	a	random	sample	of	each	reader’s	scores	is
selected	and	crosschecked	by	other	experienced	“Table	Leaders”	to	ensure	that
the	consistency	is	maintained	throughout	the	day	and	the	week.	Each	reader’s
scores	on	a	given	question	are	also	statistically	analyzed,	to	make	sure	they	are
not	giving	scores	that	are	significantly	higher	or	lower	than	the	mean	scores
given	by	other	readers	of	that	question.	All	measures	are	taken	to	maintain
consistency	and	fairness	for	your	benefit.

Will	My	Exam	Remain	Anonymous?
Absolutely.	Even	if	your	high-school	teacher	happens	to	randomly	read	your
booklet,	there	is	virtually	no	way	he	or	she	will	know	it	is	you.	To	the	reader,
each	student	is	a	number,	and	to	the	computer,	each	student	is	a	bar	code.

What	About	That	Permission	Box	on	the	Back?
The	College	Board	uses	some	exams	to	help	train	high-school	teachers	so	that
they	can	help	the	next	generation	of	physics	students	to	avoid	common	mistakes.
If	you	check	this	box,	you	simply	give	permission	to	use	your	exam	in	this	way.
Even	if	you	give	permission,	your	anonymity	is	still	maintained.

How	Is	My	Multiple-Choice	Section	Scored?
The	multiple-choice	section	of	each	physics	exam	is	worth	half	of	your	final
score.	Your	answer	sheet	is	run	through	the	computer,	which	adds	up	your
correct	responses.	Effective	with	the	May	2011	AP	exam,	the	guessing	penalty



(which	involved	subtracting	a	fraction	of	a	point	for	incorrect	responses)	has
been	eliminated.	Now	the	number	of	correct	responses	is	your	raw	score	on	the
multiple-choice	section.

If	I	Don’t	Know	the	Answer,	Should	I Guess?
Yes.	There	is	no	penalty	for	guessing.

How	Is	My	Free-Response	Section	Scored?
Your	performance	on	the	free-response	section	is	also	worth	half	of	your	final
score.	On	the	Physics	C	exams,	this	section	consists	of	three	questions,	worth	15
points	each.	Your	score	on	the	free-response	section	is	simply	the	sum	of	your
scores	on	each	problem.

How	Is	My	Final	Grade	Determined	and	What	Does	It	Mean?
Each	section	counts	for	50%	of	the	exam.	The	total	composite	score	is	thus	a
weighted	sum	of	the	multiple-choice	and	the	free-response	sections.	In	the	end,
when	all	of	the	numbers	have	been	crunched,	the	Chief	Faculty	Consultant
converts	the	range	of	composite	scores	to	the	5-point	scale	of	the	AP	grades.
This	conversion	is	not	a	true	curve—it’s	not	that	there’s	some	target	percentage
of	5s	to	give	out.	This	means	you’re	not	competing	against	other	test	takers.
Rather,	the	5-point	scale	is	adjusted	each	year	to	reflect	the	same	standards	as	in
previous	years.	The	goal	is	that	students	who	earn	5s	this	year	are	just	as	strong
as	those	who	earned	5s	in	2000	or	2010.

The	tables	at	the	end	of	the	practice	exams	in	this	book	give	you	a	rough
example	of	a	conversion,	and	as	you	complete	the	practice	exams,	you	should
use	this	to	give	yourself	a	hypothetical	grade.	Keep	in	mind	that	the	conversion
changes	slightly	every	year	to	adjust	for	the	difficulty	of	the	questions—but,
generally,	it	takes	only	about	60%	of	the	available	points	to	earn	a	5.

Finally,	you	should	receive	your	grade	in	early	July.

How	Do	I	Register	and	How	Much	Does	It	Cost?
If	you	are	enrolled	in	AP	Physics	in	your	high	school,	your	teacher	will	provide
all	of	these	details,	but	a	quick	summary	here	can’t	hurt.	After	all,	you	do	not
have	to	enroll	in	the	AP	course	to	register	for	and	complete	the	AP	exam.	When
in	doubt,	the	best	source	of	information	is	the	College	Board’s	Web	site:
www.collegeboard.com	.

In	2016,	the	fee	for	taking	the	exams	was	$92.	(This	means	$92	each	for
Physics	C	Mechanics	and	for	Physics	C	Electricity	and	Magnetism.)	Students

http://www.collegeboard.com


who	demonstrate	financial	need	may	receive	a	refund	to	offset	the	cost	of
testing.	The	amount	of	the	fee	and	the	refund	changes	a	little	from	year	to	year.
You	can	learn	more	about	the	exam	fee	and	fee	reductions	and	subsidies	from	the
coordinator	of	your	AP	program	or	by	checking	specific	information	on	the
official	website:	www.collegeboard.com.

I	know	that	seems	like	a	lot	of	money	just	for	a	test.	But,	you	should	think	of
this	$92	as	the	biggest	bargain	you’ll	ever	find.	Why?	Most	colleges	will	give
you	a	few	credit	hours	for	a	good	score.	Do	you	think	you	can	find	a	college	that
offers	those	credit	hours	for	less	than	$92?	Usually	you’re	talking	hundreds	of
dollars	per	credit	hour!	You’re	probably	saving	thousands	of	dollars	by	earning
credits	via	AP.

There	are	also	several	optional	fees	that	must	be	paid	if	you	want	your	scores
rushed	to	you	or	if	you	wish	to	receive	multiple-grade	reports.	Don’t	worry
about	doing	that	unless	your	college	demands	it.	(What,	you	think	your	scores
are	going	to	change	if	you	don’t	find	them	out	right	away?)

The	coordinator	of	the	AP	program	at	your	school	will	inform	you	where	and
when	you	will	take	the	exam.	If	you	live	in	a	small	community,	your	exam	may
not	be	administered	at	your	school,	so	be	sure	to	get	this	information.

What	if	My	School	Only	Offers	Physics	1/2	and	Not	AP	Physics	C,
or	Vice	Versa?	Or,	What	if	My	School	Doesn’t	Offer	AP	Physics	at
All?
Ideally,	you	should	enroll	in	the	AP	class	for	the	exam	you	wish	to	take.	But,	not
every	school	offers	exactly	what	you	want	to	take.

If	your	school	offers	one	exam	or	the	other,	you	are	much	better	off	taking
the	exam	for	which	your	teacher	prepared	you.	Sure,	if	you	are	an	absolute	top
Physics	1	student,	you	can	probably	pass	the	Physics	C	exam	with	some	extra
preparation;	but	if	you’re	a	top	Physics	1	student,	why	not	just	earn	your	5	on	the
1	exam	rather	than	take	a	chance	at	merely	passing	the	C	exam?	Or,	if	you’ve
been	preparing	for	Physics	C,	you	might	think	you	have	a	better	chance	for
success	on	the	“easier”	1	exam.	But,	the	1	exam	tests	different	topics	and	is	in	a
completely	different	style	than	Physics	C	so	you’re	still	most	likely	better	off	on
the	exam	your	class	taught	toward.

If	your	school	doesn’t	offer	either	AP	course,	then	you	should	look	at	the
content	outline	and	talk	to	your	teacher.	Chances	are,	you	will	want	to	take	the	1
exam,	and	chances	are	you	will	have	to	do	a	good	bit	of	independent	work	to
learn	the	topics	that	your	class	didn’t	discuss.	But,	if	you	are	a	diligent	student	in
a	rigorous	course,	you	will	probably	be	able	to	do	fine.



What	Should	I	Bring	to	the	Exam?
On	exam	day,	I	suggest	bringing	the	following	items:

•			Several	pencils	and	an	eraser	that	doesn’t	leave	smudges.
•			Black	or	blue	colored	pens	for	the	free-response	section.	1
•			A	ruler	or	straightedge.
•			A	scientific	calculator	with	fresh	batteries.	(A	graphing	calculator	is	not
necessary.)

•			A	watch	so	that	you	can	monitor	your	time.	You	never	know	if	the	exam	room
will	have	a	clock	on	the	wall.	Make	sure	you	turn	off	the	beep	that	goes	off	on
the	hour.

•			Your	school	code.
•			Your	photo	identification	and	Social	Security	number.
•			Tissues.
•			Your	quiet	confidence	that	you	are	prepared.

What	Should	I	NOT	Bring	to	the	Exam?
Leave	the	following	at	home:

•			A	cell	phone,	PDA,	or	walkie-talkie.
•			Books,	a	dictionary,	study	notes,	flash	cards,	highlighting	pens,	correction
fluid,	etc.,	including	this	book	.	Study	aids	won’t	help	you	the	morning	of	the
exam	…	end	your	studying	in	the	very	early	evening	the	night	before.

•			Portable	music	of	any	kind.	No	iPods,	MP3	players,	CD	players,	cassette
players,	or	record	players.

•			Clothing	with	any	physics	terminology	or	equations	on	it.
•			Panic	or	fear.	It’s	natural	to	be	nervous,	but	you	can	comfort	yourself	that	you
have	used	this	book	well	and	that	there	is	no	room	for	fear	on	your	exam.



1	You	may	use	a	pencil,	but	there’s	no	need	…	you	should	not	erase	incorrect	work,	you	should	cross	it
out.	Not	only	does	crossing	out	take	less	time	than	erasing,	but	if	you	erase	by	mistake,	you	lose	all	your
work.	But,	if	you	change	your	mind	about	crossing	something	out,	just	circle	your	work	and	write	the	reader
a	note:	“Grade	this!”



CHAPTER 	 3

How	to	Plan	Your	Time

IN	THIS	CHAPTER

Summary:	What	to	study	for	the	Physics	C	exam,	plus	three	schedules	to	help	you	plan.

Key	Ideas
		Focus	your	attention	and	study	time	on	those	topics	that	are	most	likely	to
increase	your	score.
		Study	the	topics	that	you’re	afraid	will	appear,	and	relax	about	those	that
you’re	best	at.
		Don’t	study	so	widely	that	you	don’t	get	good	at	some	specific	type	of
problem.

The	AP	Physics	exam	is	held	on	a	Monday	afternoon	in	mid-May.	You	may
think	that	you	just	started	your	exam	preparation	today,	when	you	opened	this
book	…	but,	in	reality,	you	have	been	getting	ready	for	the	AP	test	all	year.	The
AP	exam	is	an	authentic	test	of	your	physics	knowledge	and	skills.	Your	AP
Physics	class	presumably	is	set	up	to	teach	those	skills.	So,	don’t	give	your	class
short	shrift.	Diligent	attention	to	your	class	lectures,	demonstrations,	and
assignments	can	only	save	you	preparation	time	in	the	long	run.

Of	course,	you	may	not	be	satisfied	with	the	quantity	or	quality	of	your	in-
class	instruction.	And	even	if	your	class	is	the	best	in	the	country,	you	will	still



need	a	reminder	of	what	you	covered	way	back	at	the	beginning	of	the	year.
That’s	where	this	book,	and	extracurricular	AP	exam	preparation,	are	useful.

What	Should	I	Study?
You	will	hear	plenty	of	poorly-thought-out	advice	about	how	to	deal	with	the
vast	amounts	of	material	on	the	AP	Physics	exams,	especially	if	you	are	taking
both	Mechanics	and	E	and	M.	Fact	is,	in	the	month	or	two	before	the	exam,	you
do	not	have	enough	time	to	re-teach	yourself	the	entire	course.	So,	you	ask	a
presumed	expert,	“What	should	I	study?”

Bad	Answer	Number	1:	“Everything.”
This	logic	says,	every	topic	listed	in	the	AP	course	description	is	guaranteed	to
show	up	somewhere	on	the	exam,	whether	in	the	free-response	or	the	multiple-
choice	sections.	So,	you	must	study	everything.	That’s	ridiculous,	I	say	to	my
students.	You’ve	been	studying	“everything”	all	year.	You	need	to	focus	your
last-month	study	on	those	topics	that	are	most	likely	to	increase	your	score.

Bad	Answer	Number	2:	“Let	me	use	my	crystal	ball	to	tell	you
exactly	what	types	of	problems	will	show	up	on	this	year’s	free-
response	exam.	Study	these.”
I	know	teachers	who	think	they’re	oracles	…	“An	RC	circuit	was	on	last	year’s
test,	so	it	won’t	be	on	this	year’s.	And,	we	haven’t	seen	point	charges	for	two
straight	years,	so	we’ll	definitely	see	one	this	year.”	1	Suffice	it	to	say	that	a
teacher	who	is	not	on	the	test	development	committee	has	no	possible	way	of
divining	which	specific	types	of	problems	will	appear	on	the	exam,	any	more
than	a	college	basketball	“expert”	can	say	with	confidence	which	teams	will
make	the	final	four.	And,	even	if	you	did	know	which	topics	would	be	covered
on	the	free-response	section,	all	of	the	other	topics	must	appear	on	the	multiple-
choice	section!	So	don’t	choose	your	study	strategy	based	on	an	oracle’s	word.

Good	Answer:	Do	a	Cost-Benefit	Analysis
You	know	how	much	time	you	have	left.	Use	that	limited	time	to	study	the
topics	that	are	most	likely	to	increase	your	score.	The	trick	is	identifying	those
topics.	Start	with	honest,	hyperbole-free	answers	to	two	questions,	in	the
following	manner.

Imagine	that	the	AP	Physics	Genie	2	has	granted	you	two	boons.	You	may



choose	one	type	of	problem	that	will	be	tested	on	the	free-response	exam;	and
you	may	choose	one	type	of	problem	that	will	not	appear	on	the	free	response.
Now,	answer:

1.	What	topic	or	problem	type	do	you	ask	the	genie	to	put	on	the	exam?
2.	What	topic	or	problem	type	do	you	forbid	the	genie	to	put	on	the	exam?

If	you	are	extremely	comfortable,	say,	solving	kinematics	and	projectile
problems,	why	would	you	spend	any	time	on	those?	It	won’t	hurt	to	give
yourself	a	quick	reminder	of	fundamental	concepts,	but	in-depth	study	of	what
you	know	well	is	a	waste	of	valuable	time.	On	the	other	hand,	if	you’re	un
comfortable	with,	say,	Energy-Position	diagrams,	then	spend	a	couple	of
evenings	learning	how	to	deal	with	them.	Study	the	topics	you’re	afraid	will
appear;	relax	about	those	you’re	best	at.	3

This	is	an	important	point—don’t	study	so	broadly	that	you	don’t	get	good	at
some	specific	type	of	problem.	Use	Chapter	8	’s	drill	exercises,	or	the	end-of-
chapter	examples	in	this	book,	or	some	similar	handout	from	your	teacher,	or	a
subset	of	your	textbook’s	end-of-chapter	problems,	to	keep	practicing	until	you
actually	are	hoping	to	see	certain	types	of	problems	on	your	test.	That’s	far	more
useful	than	just	skimming	around.

For	the	mechanics	exam,	focus	your	preparation	on	Chapter	16	,	Rotational
Motion.	For	the	E&M	exam,	understand	how	to	use	Gauss’s	law	and	the	time-
varying	circuits:	RC,	RL,	and	LC.

Though	there	are	other	subtopics	that	are	unique	to	Physics	C,	extra
preparation	on	these	topics	will	probably	benefit	you	the	most,	because	they	are
(a)	far	enough	removed	from	first-year	material	that	they	truly	require	extra
work	and	(b)	understandable	with	a	reasonable	amount	of	supplemental	study.

Have	a	Plan	for	the	Exam
When	it	comes	to	the	last	few	days	before	the	exam,	think	about	your	mental
approach.	You	can	do	very	well	on	the	exam	even	if	you	have	difficulty	with	a
few	of	the	topics.	But,	know	ahead	of	time	which	topics	you	are	weak	on.	If	you
have	trouble,	say,	with	electric	fields,	plan	on	skipping	electric	fields	multiple-
choice	questions	so	as	to	concentrate	on	those	that	you’ll	have	more	success	on.
Don’t	fret	about	this	decision—just	make	it	ahead	of	time,	and	follow	your	plan.
On	the	free-response	test,	though,	be	sure	to	approach	every	problem.	Sure,	it’s
okay	to	decide	that	you	will	not	waste	time	on	electric	fields	due	to	point
charges.	But	if	you	read	the	entire	problem,	you	might	find	that	parts	(d)	and	(e)
are	simple	F	=	qE	questions,	or	ask	about	some	aspect	of	electricity	that	you



understand	just	fine.

Understand	Physics	First,	Then	AP	Physics	C
Be	sure	you	understand	physics	before	preparing	specifically	for	the	AP	Physics
C	exams.

I’ve	taught	Physics	C	with	great	success	for	many	years.	But,	not	just	anyone
can	sign	up	for	my	Physics	C	class.	I	only	take	students	who	have	completed
Physics	1,	and	for	good	reason.	The	C	course	is	very	deep.	It	requires	that	you
have	not	just	an	idea	about,	but	a	true	mastery	of,	Physics	1-	and	2-level
material.

Now,	your	first	physics	course	might	not	have	formally	been	labeled
“Advanced	Placement.”	Any	rigorous	introductory	class	is	sufficient	preparation
for	Physics	C.	Nevertheless,	before	you	even	begin	to	discuss	a	calculus-based
approach	to	problem-solving,	you	MUST	have	a	solid	conceptual	understanding
of	physics	at	the	introductory	level.

My	advice	to	my	Physics	C	students	has	always	been	to	know	the	basics.	An
average	difficulty	Physics	C	question	is	equivalent	to	an	above-average	(and
more	calculational)	Physics	1	or	2	question.	Someone	who	knows	physics	cold
at	the	1/2	level	could	do	reasonably	well	on	the	Physics	C	exam.

Therefore,	you	start	your	preparation	by	answering	the	following	with	brutal
honesty:	“Could	I	solve	any	Physics	1	level	mechanics,	or	Physics	2	E&M,
problem?	Would	I	recognize	the	appropriate	equations,	relationships,	and
definitions	instantly,	without	wrinkling	my	forehead	for	more	than	a	few
seconds?”

If	the	answer	is	“no,”	then	the	most	efficient	way	to	improve	your	Physics	C
performance	is	to	learn	the	fundamentals.	Use	your	algebra-based	physics
textbook	or	5	Steps	to	a	5:	AP	Physics	1	.	There’s	no	substitute	for	a	thorough
knowledge	of	basic	physics	principles.	Don’t	worry	about	calculus	concepts,
don’t	worry	about	the	special	Physics	C–specific	material,	just	work	until	you
have	the	material	down	at	the	introductory	level.	Even	if	this	is	the	only	exam
preparation	you	have	time	for,	you	will	be	far	better	served	by	shoring	up	your
fundamentals	than	by	grasping	at	more	difficult	concepts.

Once	you	are	rock-solid	on	your	algebra-based	physics,	then	it’s	time	to
think	about	the	advanced	topics	on	the	C	exam.



A	Word	About	Calculus
Yes,	Physics	C	is	“calculus-based”	physics.	And	yes,	you	will	be	asked	to
evaluate	a	few	integrals	and/or	derivatives	here	and	there.	But	it	is	vitally
important	that	you	understand	that	Physics	C	is	not	a	math	course.	The
development	committee	is	not	trying	to	find	out	whether	you	know	how	to
evaluate	∫	sin	x	·	dx	.	Rather,	they	are	looking	to	see	whether	you	understand	how
to	apply	calculus	concepts	to	physics	problems.	What	do	we	mean	by	calculus
concepts?	Two	things.

1.	Recognizing	When	a	Calculus	Approach	Is	Necessary
In	algebra-based	physics	you	learned	that	the	work	done	by	a	force	is	equal	to
that	force	times	parallel	displacement.	You	will	use	that	relationship	in	Physics
C,	too.	However,	in	Physics	C,	you	must	recognize	the	limitations	of	that
relationship:	you	can	only	multiply	force	times	parallel	displacement	when	the
force	is	constant	.	If	the	force	is	changing,	you	must	use	calculus	concepts,
knowing	that	work	is	the	integral	of	force	with	respect	to	distance.

Physics	1-style	situations,	in	which	calculus	is	not	necessary,	will	appear	on
the	Physics	C	exam.	Your	challenge	is	to	recognize	when	a	quantity	is	changing
in	such	a	way	that	calculus	must	be	used.

2.	Understanding	the	Conceptual	and	Graphical	Meanings	of
Integrals	and	Derivatives
On	a	graph,	an	integral	is	the	area	under	the	graph;	a	derivative	is	the	slope	of	a
graph	at	a	given	point.	Consider	a	problem	in	which	you’re	asked	to	find	the
work	done	by	a	non-constant	force.	If	you’re	given	a	graph	of	that	force	vs.
position,	then	all	you’ve	got	to	do	is	find	the	area	under	the	graph—no
integration	necessary	.

You	should	have	an	idea	of	the	meaning	of	a	derivative	or	integral,	even
without	evaluating	it,	or	without	graphing	the	function	in	question.	This	isn’t	as
hard	as	it	looks!	Consider	the	following	multiple-choice	problem:

A	box	is	pushed	across	a	frictionless	table	a	distance	of	9	m.	The	horizontal
force	pushing	the	box	obeys	the	function	F	(x	)	=	50(5	–	 	),	where	F	is	in
newtons	and	x	is	in	meters.	How	much	work	is	done	by	the	pushing	force?

(A)		2500	J
(B)		1700	J



(C)		900	J
(D)		250	J
(E)		90	J

“Whoa,”	you	say.	“This	is	a	nasty	calculus	problem,	especially	without	a

calculator.”	Your	first	instinct	is	to	take	the	integral	 	.	That

becomes	nasty	toot	sweet.	No
chance	you	can	get	that	done	in	the	minute	or	so	you	have	on	a	multiple-choice
problem.
So,	what	to	do?

You	know	in	your	bones	that	if	this	force	were	constant,	then	all	you’d	have
to	do	is	multiply	the	force	by	9	m.	This	force	is	not	constant.	But,	we	can
approximate	an	average	force	from	the	function,	can’t	we?	Sure	…	the	initial
force	is	50(5	–	0)	=	250	N.	The	force	at	the	end	of	the	push	is	50(5	–	 	)	=	100
N.	So,	the	average	force	is	somewhere	in	between	100	N	and	250	N.	4	Guess	that
this	average	force	is,	say,	200	N	…	then,	the	work	would	be	(200	N)(9	m)	=
1800	J.	So	the	answer	is	B	.

Note	that	ANY	kind	of	estimate	of	the	average	force	would	still	get	you	close
to	the	correct	answer.	This	is	a	classic	calculus	concepts	question	…	it’s	not
about	evaluating	the	integral,	it’s	about	understanding	the	meaning	of	work.

What	Specific	Calculus	Methods	Do	I	Have	to	Know?
You	will	be	expected	to	evaluate	straightforward	integrals	and	derivatives.
Remember,	this	is	not	a	math	test—the	exam	is	not	trying	to	test	your	math	skills
but	rather	your	ability	to	apply	calculus	to	physical	situations.	This	means	the
actual	integrals	and	derivatives	will	not	be	from	the	most	difficult	questions	on
your	AP	Calculus	BC	test!

You	should	know:

•			Derivatives	and	integrals	of	polynomial	functions
•			Derivatives	and	integrals	of	sin	x	and	cos	x	—but	we’ve	never	seen	questions
that	require	trigonometric	identities	on	the	exam

•			Derivatives	and	integrals	with	ln	x	or	ex
•			Derivatives	using	the	chain	rule
•			Integration	with	u	-substitution



If	you	need	a	review	of	these	topics,	take	a	look	at	your	calculus	book	or	at	5
Steps	to	a	5:	AP	Calculus	AB	.

Two	other	mathematical	techniques	are	necessary	on	the	Physics	C	exam:

•			Basic	first-	and	second-order	differential	equations
•			Integrals	involving	linear	density

These	topics	are	covered	briefly	in	this	book.

Three	Different	Study	Schedules

Plan	A:	You	Have	a	Full	School	Year	to	Prepare



Although	its	primary	purpose	is	to	prepare	you	for	the	AP	Physics	exam	you	will
take	in	May,	this	book	can	enrich	your	study	of	physics,	your	analytical	skills,

and	your	problem-solving	abilities.

SEPTEMBER–OCTOBER	(Check	off	the	activities	as	you	complete	them.)
—	Determine	the	study	mode	(A,	B,	or	C)	that	applies	to	you.
—	Carefully	read	Steps	1	and	2	of	this	book.
—	Work	through	the	diagnostic	exam.
—	Get	on	the	web	and	take	a	look	at	the	AP	Web	site(s).
—	Skim	Step	4	.	(Reviewing	the	topics	covered	in	this	section	will	be	part	of

your	year-long	preparation.)
—	Buy	a	few	color	highlighters.
—	Flip	through	the	entire	book.	Break	the	book	in.	Write	in	it.	Highlight	it.
—	Get	a	clear	picture	of	what	your	own	school’s	AP	Physics	curriculum	is.
—	Begin	to	use	this	book	as	a	resource	to	supplement	the	classroom	learning.

NOVEMBER	(The	first	10	weeks	have	elapsed.)
—	Read	and	study	Chapter	9	,	A	Bit	About	Vectors.
—	Read	and	study	Chapter	10	,	Free-Body	Diagrams	and	Equilibrium.
—	Read	Chapter	6	,	Memorizing	Equations	in	the	Shower.

DECEMBER
—	Read	and	study	Chapter	11	,	Kinematics.
—	Read	and	study	Chapter	12	,	Newton’s	Second	Law,	F	net	=	ma	.
—	Read	and	study	Chapter	13	,	Momentum.
—	Review	Chapters	9	–10	.

JANUARY	(20	weeks	have	elapsed.)
—	Read	and	study	Chapter	14	,	Energy	Conservation.
—	Read	and	study	Chapter	15	,	Gravitation	and	Circular	Motion.
—	Review	Chapters	9	–13	.

FEBRUARY
—	Read	and	study	Chapter	16	,	Rotational	Motion	(for	Physics	C	students	only).
—	Read	and	study	Chapter	17	,	Simple	Harmonic	Motion.
—	Review	Chapters	9	–15	.



MARCH	(30	weeks	have	now	elapsed.)
—	Read	and	study	Chapter	18	,	Electrostatics.
—	Read	and	study	Chapter	19	,	Circuits.
—	Review	Chapters	9	–20	.

APRIL
—	Read	and	study	Chapter	20	,	Magnetism.
—	Review	Chapters	9	–19	.
—	Read	Chapters	7	–8	carefully!

MAY	(first	2	weeks)	(THIS	IS	IT!)
—	Review	Chapters	9	–20	—all	the	material!!!
—	Take	the	Practice	Exams,	and	score	yourself.
—	Get	a	good	night’s	sleep	before	the	exam.	Fall	asleep	knowing	that	you	are

well	prepared.

GOOD	LUCK	ON	THE	TEST.

Plan	B:	You	Have	One	Semester	to	Prepare

Working	under	the	assumption	that	you’ve	completed	one	semester	of	your
physics	course,	the	following	calendar	will	use	those	skills	you’ve	been

practicing	to	prepare	you	for	the	May	exam.

JANUARY–FEBRUARY
—	Carefully	read	Steps	1	and	2	of	this	book.
—	Work	through	the	diagnostic	exam.
—	Read	and	study	Chapter	9	,	A	Bit	About	Vectors.
—	Read	and	study	Chapter	10	,	Free-Body	Diagrams	and	Equilibrium.
—	Read	and	study	Chapter	11	,	Kinematics.
—	Read	and	study	Chapter	12	,	Newton’s	Second	Law,	F	net	=	ma	.
—	Read	and	study	Chapter	13	,	Momentum.
—	Read	Chapter	6	,	Memorizing	Equations	in	the	Shower.

MARCH	(10	weeks	to	go.)



—	Read	and	study	Chapter	14	,	Energy	Conservation.
—	Read	and	study	Chapter	15	,	Gravitation	and	Circular	Motion.
—	Read	and	study	Chapter	16	,	Rotational	Motion.
—	Read	and	study	Chapter	17	,	Simple	Harmonic	Motion.
—	Review	Chapters	9	–13	.

APRIL
—	Read	and	study	Chapter	18	,	Electrostatics.
—	Read	and	study	Chapter	19	,	Circuits.
—	Read	and	study	Chapter	20	,	Magnetism.
—	Review	Chapters	9	–17	.

MAY	(first	2	weeks)	(THIS	IS	IT!)
—	Review	Chapters	9	–20	—all	the	material!!!
—	Read	Chapters	7	–8	carefully!
—	Take	the	Practice	Exams	and	score	yourself.
—	Get	a	good	night’s	sleep	before	the	exam.	Fall	asleep	knowing	that	you	are

well	prepared.

GOOD	LUCK	ON	THE	TEST.

Plan	C:	You	Have	Six	Weeks	to	Prepare

At	this	point,	we	assume	that	you	have	been	building	your	physics	knowledge
base	for	more	than	six	months	(if	you’re	a	Physics	C	student,	you’ve	probably
been	studying	physics	for	more	than	a	year).	You	will,	therefore,	use	this	book
primarily	as	a	specific	guide	to	the	AP	Physics	exam.	Given	the	time	constraints,
now	is	not	the	time	to	try	to	expand	your	AP	Physics	knowledge.	Rather,	you

should	focus	on	and	refine	what	you	already	do	know.

APRIL	1–15
—	Skim	Steps	1	and	2	of	this	book.
—	Skim	Chapters	9	–13	.
—	Skim	and	highlight	the	Glossary	at	the	end	of	the	book.
—	Read	Chapter	6	,	and	work	on	memorizing	equations.



APRIL	16–MAY	1
—	Skim	Chapters	14	–18	.
—	Continue	to	work	on	memorizing	equations.

MAY	(first	2	weeks)	(THIS	IS	IT!)
—	Skim	Chapters	19	–20	.
—	Carefully	go	over	the	Rapid	Review	sections	of	Chapters	10	–20	.
—	Read	Chapter	7	.
—	Take	the	Practice	Exams	and	score	yourself.
—	Get	a	good	night’s	sleep	before	the	exam.	Fall	asleep	knowing	that	you	are

well	prepared.

GOOD	LUCK	ON	THE	TEST.



1	A	moment’s	thought	will	find	some	inconsistency	in	the	above	logic.
2	…	who	is	not	a	real	person	…
3	I	know	many	wiseguys	will	say,	“There’s	nothing	I’m	comfortable	with;	I’m	bad	at	everything.”	That’s

called	defeatism,	and	you	shouldn’t	tolerate	that	from	yourself.	If	you	were	to	tell	your	softball	coach,	“Hey,
I’m	going	to	strike	out	at	the	plate,	let	grounders	go	through	my	legs,	and	drop	all	the	fly	balls	hit	to	me,”
would	the	coach	let	you	play?	More	likely,	he	or	she	would	kick	you	off	the	team!	When	you	pretend	that
you	can’t	do	anything	in	physics,	you	do	yourself	a	tremendous	disservice.	Pick	something	that	you	can
figure	out,	some	topic	you	can	develop	confidence	in,	and	go	from	there.

4	Not	exactly	in	between,	because	this	function	is	not	linear.	However,	you’ll	see	that	any	approximation
of	the	average	force	will	do	here.
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CHAPTER 	 4

Fundamentals	Quizzes

IN	THIS	CHAPTER

Summary:	To	test	your	readiness	for	the	exam,	take	these	short	quizzes	on	these	two	fundamental	topics	of
AP	Physics.

Key	Ideas
		Find	out	what	you	know—and	what	you	don’t	know—about	mechanics.
		Find	out	what	you	know—and	what	you	don’t	know—about	electricity	and
magnetism.
		Focus	your	exam	preparation	time	only	on	the	areas	you	don’t	already	know
well.

These	short	quizzes	may	be	helpful	if	you’re	looking	for	some	additional	review
of	the	most	fundamental	topics	in	AP	Physics.	If	you	can	get	all	these	right,	you
are	READY	for	the	exam!

The	answers	are	printed	at	the	end	of	this	chapter.

Mechanics	Quiz
1	.	What	is	the	mass	of	a	block	with	weight	100	N?



2	.	Give	the	equations	for	two	types	of	potential	energy,	identifying	each.

3	.	When	an	object	of	mass	m	is	on	an	incline	of	angle	θ	,	one	must	break	the
weight	of	an	object	into	components	parallel	and	perpendicular	to	the
incline.

		i.	What	is	the	component	of	the	weight	parallel	to	the	incline?_________
ii.	What	is	the	component	of	the	weight	perpendicular	to	the	incline?
_________

4	.	Write	two	expressions	for	work,	including	the	definition	of	work	and	the
work-energy	principle.

5	.	Quickly	identify	as	a	vector	or	a	scalar:

6	.	Name	at	least	four	things	that	can	NEVER	go	on	a	free-body	diagram.

7	.	Write	two	expressions	for	impulse.	What	are	the	units	of	impulse?

8	.	In	what	kind	of	collision	is	momentum	conserved?	In	what	kind	of	collision
is	kinetic	energy	conserved?

9	.	What	is	the	mass	of	a	block	with	weight	W	?

10	.	A	ball	is	thrown	straight	up.	At	the	peak	of	its	flight,	what	is	the	ball’s
acceleration?	Be	sure	to	give	both	magnitude	and	direction.

11	.	A	mass	experiences	a	force	vector	with	components	30	N	to	the	right,	40	N
down.	Explain	how	to	determine	the	magnitude	and	direction	(angle)	of	the
force	vector.

12	.	Write	the	definition	of	the	coefficient	of	friction,	μ	.	What	are	the	units	of	m
?

13	.	How	do	you	find	acceleration	from	a	velocity-time	graph?

14	.	How	do	you	find	displacement	from	a	velocity-time	graph?

15	.	How	do	you	find	velocity	from	a	position-time	graph?

16	.	An	object	has	a	positive	acceleration.	Explain	briefly	how	to	determine
whether	the	object	is	speeding	up,	slowing	down,	or	moving	with	constant
speed.



17	.	Given	the	velocity	of	an	object,	how	do	you	tell	which	direction	that	object
is	moving?

18	.	When	is	the	gravitational	force	on	an	object	mg	?	When	is	the	gravitational
force	Gm	1	m2	/r	2	?

19	.	What	is	the	direction	of	the	net	force	on	an	object	that	moves	in	a	circle	at
constant	speed?

20	.	Under	what	conditions	is	the	equation	 	at2	valid?	Give	a
specific	situation	in	which	this	equation	might	seem	to	be	valid,	but	is	NOT.

Electricity	and	Magnetism	Quiz
1	.	Given	the	charge	of	a	particle	and	the	electric	field	experienced	by	that
particle,	give	the	equation	to	determine	the	electric	force	acting	on	the
particle.

2	.	Given	the	charge	of	a	particle	and	the	magnetic	field	experienced	by	that
particle,	give	the	equation	to	determine	the	magnetic	force	acting	on	the
particle.

3	.	What	are	the	units	of	magnetic	flux?	What	are	the	units	of	EMF?

4	.	A	wire	carries	a	current	to	the	left,	as	shown	below.	What	is	the	direction
and	magnitude	of	the	magnetic	field	produced	by	the	wire	at	point	P	?

5	.	When	is	the	equation	kQ/r	2	valid?	What	is	this	an	equation	for?

6	.	The	electric	field	at	point	P	is	100	N/C;	the	field	at	point	Q	,	1	meter	away
from	point	P	,	is	200	N/C.	A	point	charge	of	+1	C	is	placed	at	point	P	.	What
is	the	magnitude	of	the	electric	force	experienced	by	this	charge?

7	.	Can	a	current	be	induced	in	a	wire	if	the	flux	through	the	wire	is	zero?
Explain.

8	.	True	or	false:	In	a	uniform	electric	field	pointing	to	the	right,	a	negatively
charged	particle	will	move	to	the	left.	If	true,	justify	with	an	equation;	if
false,	explain	the	flaw	in	reasoning.



9	.	Which	is	a	vector	and	which	is	a	scalar:	electric	field	and	electric	potential?

10	.	Fill	in	the	blank	with	either	“parallel”	or	“series”:

a.	Voltage	across	resistors	in	______	must	be	the	same	for	each.
b.	Current	through	resistors	in	______	must	be	the	same	for	each.
c.	Voltage	across	capacitors	in	______	must	be	the	same	for	each.
d.	Charge	stored	on	capacitors	in	______	must	be	the	same	for	each.

11	.	A	uniform	electric	field	acts	to	the	right.	In	which	direction	will	each	of
these	particles	accelerate?

a.	proton
b.	positron	(same	mass	as	electron,	but	opposite	charge)
c.	neutron
d.	anti-proton	(same	mass	as	proton,	but	opposite	charge)

12	.	A	uniform	magnetic	field	acts	to	the	right.	In	which	direction	will	each	of
these	particles	accelerate,	assuming	they	enter	the	field	moving	toward	the
top	of	the	page?

a.	proton
b.	positron	(same	mass	as	electron,	but	opposite	charge)
c.	neutron
d.	anti-proton	(same	mass	as	proton,	but	opposite	charge)

13	.	How	do	you	find	the	potential	energy	of	an	electric	charge?

Answers	to	Mechanics	Quiz
1	.	Weight	is	mg	.	So,	mass	is	weight	divided	by	g	,	which	would	be	100	N/(10
N/kg)	=	10	kg.

2	.	PE	=	mgh	,	gravitational	potential	energy;
PE	=	½kx	2	,	potential	energy	of	a	spring.

3	.	i.	mg	sin	θ	is	parallel	to	the	incline.
ii.	mg	cos	θ	is	perpendicular	to	the	incline.

4	.	The	definition	of	work	is	work	=	force	times	parallel	displacement.	The
work-energy	principle	states	that	net	work	=	change	in	kinetic	energy.



5	.	vectors:	acceleration,	force,	momentum,	velocity,	displacement
scalars:	speed,	work,	mass,	kinetic	energy

6	.	Only	forces	acting	on	an	object	and	that	have	a	single,	specific	source	can
go	on	free-body	diagrams.	Some	of	the	things	that	cannot	go	on	a	free-body
diagram	but	that	students	often	put	there	by	mistake:

7	.	Impulse	is	force	times	time	interval,	and	also	change	in	momentum.	Impulse
has	units	either	of	newton·seconds	or	kilogram·meters/second.

8	.	Momentum	is	conserved	in	all	collisions.	Kinetic	energy	is	conserved	only
in	elastic	collisions.

9	.	Using	the	reasoning	from	question	#1,	if	weight	is	mg	,	then	m	=	W	/g	.

10	.	The	acceleration	of	a	projectile	is	always	g	;	i.e.,	10	m/s2	,	downward.	Even
though	the	velocity	is	instantaneously	zero,	the	velocity	is	still	changing,	so
the	acceleration	is	not	zero.	(By	the	way,	the	answer	“−10	m/s2	”	is	wrong
unless	you	have	clearly	and	specifically	defined	the	down	direction	as
negative	for	this	problem.)

11	.	The	magnitude	of	the	resultant	force	is	found	by	placing	the	component
vectors	tip-to-tail.	This	gives	a	right	triangle,	so	the	magnitude	is	given	by
the	Pythagorean	theorem,	50	N.	The	angle	of	the	resultant	force	is	found	by
taking	the	inverse	tangent	of	the	vertical	component	over	the	horizontal
component,	tan−1	(40/30).	This	gives	the	angle	measured	from	the	horizontal.

12	.	

friction	force	divided	by	normal	force.	μ	has	no	units.

13	.	Acceleration	is	the	slope	of	a	velocity-time	graph.

14	.	Displacement	is	the	area	under	a	velocity-time	graph	(i.e.,	the	area	between
the	graph	and	the	horizontal	axis).

15	.	Velocity	is	the	slope	of	a	position-time	graph.	If	the	position-time	graph	is
curved,	then	instantaneous	velocity	is	the	slope	of	the	tangent	line	to	the
graph.

16	.	Because	acceleration	is	not	zero,	the	object	cannot	be	moving	with	constant



speed.	If	the	signs	of	acceleration	and	velocity	are	the	same	(here,	if	velocity
is	positive),	the	object	is	speeding	up.	If	the	signs	of	acceleration	and	velocity
are	different	(here,	if	velocity	is	negative),	the	object	is	slowing	down.

17	.	An	object	always	moves	in	the	direction	indicated	by	the	velocity.

18	.	Near	the	surface	of	a	planet,	mg	gives	the	gravitational	force.	Newton’s	law
of	gravitation,	Gm	1	m	2	/r	2	,	is	valid	everywhere	in	the	universe.	(It	turns	out
that	g	can	be	found	by	calculating	GM	planet	/R	planet	2	,	where	R	planet	is	the
planet’s	radius.)

19	.	An	object	in	uniform	circular	motion	experiences	a	centripetal	,	meaning
“center	seeking,”	force.	This	force	must	be	directed	to	the	center	of	the	circle.

20	.	This	and	all	three	kinematics	equations	are	valid	only	when	acceleration	is
constant.	So,	for	example,	this	equation	can	NOT	be	used	to	find	the	distance
travelled	by	a	mass	attached	to	a	spring.	The	spring	force	changes	as	the
mass	moves;	thus,	the	acceleration	of	the	mass	is	changing,	and	kinematics
equations	are	not	valid.	(On	a	problem	where	kinematics	equations	aren’t
valid,	conservation	of	energy	usually	is	what	you	need.)

Answers	to	Electricity	and	Magnetism	Quiz
1	.	F	=	qE	.

2	.	F	=	qvB	sin	θ	.

3	.	Magnetic	flux	is	BA	,	so	the	units	are	tesla·meters2	(or,	alternatively,
webers).	EMF	is	a	voltage,	so	the	units	are	volts.

4	.	Point	your	right	thumb	in	the	direction	of	the	current,	i.e.,	to	the	left.	Your
fingers	point	in	the	direction	of	the	magnetic	field.	This	field	wraps	around
the	wire,	pointing	into	the	page	above	the	wire	and	out	of	the	page	below	the
wire.	Since	point	P	is	below	the	wire,	the	field	points	out	of	the	page.

5	.	This	equation	is	only	valid	when	a	point	charge	produces	an	electric	field.
(Careful—if	you	just	said	“point	charge,”	you’re	not	entirely	correct.	If	a
point	charge	experiences	an	electric	field	produced	by	something	else,	this
equation	is	irrelevant.)	It	is	an	equation	for	the	electric	field	produced	by	the
point	charge.

6	.	Do	not	use	E	=	kQ	/r	2	here	because	the	electric	field	is	known.	So,	the



source	of	the	electric	field	is	irrelevant—just	use	F	=	qE	to	find	that	the	force
on	the	charge	is	(1	C)(100	N/C)	=	100	N.	(The	charge	is	placed	at	point	P	,
so	anything	happening	at	point	Q	is	irrelevant.)

7	.	Yes!	Induced	EMF	depends	on	the	change	in	flux.	So,	imagine	that	the	flux
is	changing	rapidly	from	one	direction	to	the	other.	For	a	brief	moment,	flux
will	be	zero;	but	flux	is	still	changing	at	that	moment.	(And,	of	course,	the
induced	current	will	be	the	EMF	divided	by	the	resistance	of	the	wire.)

8	.	False.	The	negative	particle	will	be	forced	to	the	left.	But	the	particle	could
have	entered	the	field	while	moving	to	the	right	…	in	that	case,	the	particle
would	continue	moving	to	the	right,	but	would	slow	down.

9	.	Electric	field	is	a	vector,	so	fields	produced	in	different	directions	can
cancel.	Electric	potential	is	a	scalar,	so	direction	is	irrelevant.

10	.	Voltage	across	resistors	in	parallel	must	be	the	same	for	each.
Current	through	resistors	in	series	must	be	the	same	for	each.
Voltage	across	capacitors	in	parallel	must	be	the	same	for	each.
Charge	stored	on	capacitors	in	series	must	be	the	same	for	each.

11	.	The	positively	charged	proton	will	accelerate	with	the	field,	to	the	right.
The	positively	charged	positron	will	accelerate	with	the	field,	to	the	right.
The	uncharged	neutron	will	not	accelerate.
The	negatively	charged	anti-proton	will	accelerate	against	the	field,	to	the
left.

12	.	Use	the	right-hand	rule	for	each:
The	positively	charged	proton	will	accelerate	into	the	page.
The	positively	charged	positron	will	accelerate	into	the	page.
The	uncharged	neutron	will	not	accelerate.
The	negatively	charged	anti-proton	will	accelerate	out	of	the	page.

13	.	If	you	know	the	electric	potential	experienced	by	the	charge,	PE	=	qV	.

What	Do	I	Know,	and	What	Don’t	I	Know?
I’ll	bet	you	didn’t	get	every	question	on	both	of	these	fundamentals	quizzes
correct.	That’s	okay.	The	whole	point	of	these	quizzes	is	for	you	to	determine
where	to	focus	your	study.

It’s	a	common	mistake	to	“study”	by	doing	20	problems	on	a	topic	on	which



you	are	already	comfortable.	But	that’s	not	studying	…	that’s	a	waste	of	time.
You	don’t	need	to	drill	yourself	on	topics	you	already	understand!	It’s	also
probably	a	mistake	to	attack	what	for	you	is	the	toughest	concept	in	physics	right
before	the	exam.	Virtually	every	student	has	that	one	chapter	they	just	don’t	get,
however	hard	they	try.	That’s	okay.

The	fundamentals	quizzes	that	you	just	took	can	tell	you	exactly	what	you
should	and	should	not	study.	Did	you	give	correct	answers	with	full	confidence
in	the	correctness	of	your	response?	In	that	case,	you’re	done	with	that	topic.	No
more	work	is	necessary.	The	place	to	focus	your	efforts	is	on	the	topics	where
either	you	gave	wrong	answers	that	you	thought	were	right,	or	right	answers	that
you	weren’t	really	sure	about.

Now,	take	the	diagnostic	test.	Once	you’ve	used	the	fundamentals	quizzes
and	diagnostic	test	to	identify	the	specific	content	areas	you	want	to	work	on,
proceed	to	the	review	in	Chapters	9	–20	.	Read	a	chapter,	work	through	the
examples	in	the	chapter,	and	attempt	some	of	the	problems	at	the	end	of	the
chapter.	Then	come	back	to	these	fundamentals	quizzes.	When	you	respond	to
every	question	confidently,	you	are	ready.



CHAPTER 	 5

Take	a	Diagnostic	Test

IN	THIS	CHAPTER

Summary:	Assess	your	strengths	and	weaknesses	by	answering	some	sample	questions	and	then	reading
the	answers	and	explanations,	so	you’ll	know	where	to	focus	your	efforts	when	preparing	for	the	exam.

	Diagnostic	Test
Kinematics
1	.	Which	of	the	following	must	be	true	of	an	object	that	is	slowing	down?

(A)	Its	acceleration	must	be	negative.
(B)	Its	velocity	must	be	smaller	than	its	acceleration.
(C)	It	must	experience	more	than	one	force.
(D)	Its	acceleration	and	its	velocity	must	be	in	opposite	directions.
(E)	Its	velocity	must	be	negative.

2	.	A	baseball	is	thrown	straight	up.	It	reaches	a	peak	height	of	15	m,	measured
from	the	ground,	in	a	time	of	1.7	s.	Treating	“up”	as	the	positive	direction,
what	is	the	acceleration	of	the	ball	when	it	reaches	its	peak	height?

(A)	0	m/s2

(B)	+8.8	m/s2

(C)	−8.8	m/s2

(D)	+9.8	m/s2

(E)	−9.8	m/s2



Newton’s	laws

3	.	What	is	the	vertical	component	of	F	1	in	the	above	diagram?

(A)	½F	1
(B)	F	1
(C)	F	1	cos	θ
(D)	F	1	sin	θ
(E)	F	1	tan	θ

4	.	The	box	pictured	above	moves	at	constant	speed	to	the	left.	Which	of	the
following	is	correct?

(A)	The	situation	is	impossible.	Because	more	forces	act	right,	the	block	must
move	to	the	right.

(B)	T	3	>	T	1	+	T	2
(C)	T	3	<	T	1	+	T	2
(D)	T	3	=	T	1	+	T	2
(E)	A	relationship	among	the	three	tensions	cannot	be	determined	from	the

information	given.

The	following	diagram	relates	to	Questions	5	and	6.



A	block	of	mass	m	is	sliding	up	a	frictionless	incline,	as	shown	above.	The
block’s	initial	velocity	is	3	m/s	up	the	plane.

5	.	What	is	the	component	of	the	weight	parallel	to	the	plane?

(A)	mg
(B)	mg	cos	40°
(C)	mg	sin	40°
(D)	g	sin	40°
(E)	g	cos	40°

6	.	What	is	the	acceleration	of	the	mass?

(A)	3	m/s2	,	up	the	plane
(B)	mg	sin	40°,	up	the	plane
(C)	mg	sin	40°,	down	the	plane
(D)	g	sin	40°,	up	the	plane
(E)	g	sin	40°,	down	the	plane

Work/Energy
7	.	Which	of	the	following	is	a	scalar?

(A)	velocity
(B)	acceleration
(C)	displacement
(D)	kinetic	energy
(E)	force

8	.	A	500-g	block	on	a	flat	tabletop	slides	2.0	m	to	the	right.	If	the	coefficient	of
friction	between	the	block	and	the	table	is	0.1,	how	much	work	is	done	on	the
block	by	the	table?



(A)	0.5	J
(B)	1.0	J
(C)	0	J
(D)	100	J
(E)	50	J

9	.	A	block	has	1500	J	of	potential	energy	and	700	J	of	kinetic	energy.	Ten
seconds	later,	the	block	has	100	J	of	potential	energy	and	900	J	of	kinetic
energy.	Friction	is	the	only	external	force	acting	on	the	block.	How	much
work	was	done	on	this	block	by	friction?

(A)	600	J
(B)	200	J
(C)	1400	J
(D)	1200	J
(E)	120	J

Momentum
10	.	Two	identical	small	balls	are	moving	with	the	same	speed	toward	a	brick

wall.	After	colliding	with	the	wall,	ball	1	sticks	to	the	wall	while	ball	2
bounces	off	the	wall,	moving	with	almost	the	same	speed	that	it	had	initially.
Which	ball	experiences	greater	impulse?

(A)	ball	1
(B)	ball	2
(C)	Both	experience	the	same	impulse.
(D)	The	answer	cannot	be	determined	unless	we	know	the	time	of	collision.
(E)	The	answer	cannot	be	determined	unless	we	know	the	force	each	ball

exerts	on	the	wall.

11	.	Ball	A	moves	to	the	right	with	a	speed	of	5.0	m/s;	Ball	B	moves	to	the	left
with	speed	2.0	m/s.	Both	balls	have	mass	1.0	kg.	What	is	the	total
momentum	of	the	system	consisting	only	of	balls	A	and	B	?

(A)	7.0	N·s	to	the	right
(B)	3.0	N·s	to	the	right
(C)	zero
(D)	7.0	N·s	to	the	left
(E)	3.0	N·s	to	the	left



12	.	Momentum	of	an	isolated	system	always	remains	constant.	However,	in	a
collision	between	two	balls,	a	ball’s	momentum	might	change	from,	say,	+1
kg	m/s	to	−1	kg	m/s.	How	can	this	be	correct?

(A)	It	is	not	correct.	Momentum	conservation	means	that	the	momentum	of
an	object	must	remain	the	same.

(B)	A	force	outside	the	two-ball	system	must	have	acted.
(C)	Friction	is	responsible	for	the	change	in	momentum.
(D)	Although	one	ball’s	momentum	changed,	the	momentum	of	both	balls	in

total	remained	the	same.
(E)	Momentum	is	conserved	because	the	magnitude	of	the	ball’s	momentum

remained	the	same.

Circular	motion
13	.	Which	of	the	following	must	be	true	of	an	object	in	uniform	circular

motion?

(A)	Its	velocity	must	be	constant.
(B)	Its	acceleration	and	its	velocity	must	be	in	opposite	directions.
(C)	Its	acceleration	and	its	velocity	must	be	perpendicular	to	each	other.
(D)	It	must	experience	a	force	away	from	the	center	of	the	circle.
(E)	Its	acceleration	must	be	negative.

Harmonic	motion
14	.	A	mass	on	a	spring	has	a	frequency	of	2.5	Hz	and	an	amplitude	of	0.05	m.

What	is	the	period	of	the	oscillations?

(A)	0.4	s
(B)	0.2	s
(C)	8	s
(D)	20	s
(E)	50	s

15	.	A	mass	m	oscillates	on	a	horizontal	spring	of	constant	k	with	no	damping.
The	amplitude	of	the	oscillation	is	A	.	What	is	the	potential	energy	of	the
mass	at	its	maximum	displacement?

(A)	zero
(B)	mgh
(C)	kA



(D)	½mv	2

(E)	½kA	2

Rotational	motion
16	.	A	ball	of	mass	m	is	spinning	about	a	diameter.	If	it	were	instead	to	make

twice	as	many	rotations	per	second,	what	would	happen	to	the	ball’s
rotational	inertia	and	its	angular	momentum?

Gravitation
17	.	A	satellite	orbits	the	moon	far	from	its	surface	in	a	circle	of	radius	r	.	If	a

second	satellite	has	a	greater	speed,	yet	still	needs	to	maintain	a	circular	orbit
around	the	moon,	how	should	the	second	satellite	orbit?

(A)	with	a	radius	r
(B)	with	a	radius	greater	than	r
(C)	with	a	radius	less	than	r
(D)	Only	an	eccentric	elliptical	orbit	can	be	maintained	with	a	larger	speed.
(E)	No	orbit	at	all	can	be	maintained	with	a	larger	speed.

Electrostatics
18	.	Which	of	the	following	statements	about	electric	potential	is	correct?

(A)	A	proton	experiences	a	force	from	a	region	of	low	potential	to	a	region	of
high	potential.

(B)	The	potential	of	a	negatively	charged	conductor	must	be	negative.
(C)	If	the	electric	field	is	zero	at	point	P	,	then	the	electric	potential	at	P	must

also	be	zero.
(D)	If	the	electric	potential	is	zero	at	point	P	,	then	the	electric	field	at	P	must

also	be	zero.



(E)	The	electric	potential	with	respect	to	earth	ground	can	be	less	than	zero	at
all	points	on	an	isolated	wire	conductor.

19	.	A	uniform	electric	field	points	to	the	right,	as	shown	above.	A	test	charge
can	be	placed	at	one	of	three	points	as	shown	in	the	above	diagram.	At	which
point	does	the	test	charge	experience	the	greatest	force?

(A)	point	A
(B)	point	B
(C)	point	C
(D)	The	charge	experiences	the	greatest	force	at	two	of	these	three	points.
(E)	The	charge	experiences	the	same	force	at	all	three	points.

20	.	An	electron	in	an	electric	field	is	suspended	above	the	earth’s	surface.
Which	of	the	following	diagrams	correctly	shows	the	forces	acting	on	this
electron?

(A)	

(B)	



(C)	

(D)	

(E)	

Circuits
21	.	Which	of	the	following	will	increase	the	capacitance	of	a	parallel	plate

capacitor?

(A)	increasing	the	charge	stored	on	the	plates
(B)	decreasing	the	charge	stored	on	the	plates
(C)	increasing	the	separation	between	the	plates
(D)	decreasing	the	separation	between	the	plates
(E)	decreasing	the	area	of	the	plates

22	.	A	10-V	battery	is	connected	to	two	parallel	10-Ω	resistors,	as	shown	above.
What	is	the	current	through	and	voltage	across	each	resistor?



Magnetic	fields	and	force

23	.	A	positive	point	charge	enters	a	uniform	rightward	magnetic	field	with	a
velocity	v	,	as	diagramed	above.	What	is	the	direction	of	the	magnetic	force
on	the	charge?

(A)	in	the	same	direction	as	v
(B)	to	the	right
(C)	to	the	left
(D)	out	of	the	page
(E)	into	the	page



24	.	A	long	wire	carries	a	current	I	toward	the	top	of	the	page.	What	is	the
direction	of	the	magnetic	field	produced	by	this	wire	to	the	left	of	the	wire?

(A)	into	the	page
(B)	out	of	the	page
(C)	toward	the	bottom	of	the	page
(D)	toward	the	top	of	the	page
(E)	to	the	right

Electromagnetism

25	.	A	circular	loop	of	wire	in	the	plane	of	the	page	is	placed	in	a	magnetic	field
pointing	into	the	page,	as	shown	above.	Which	of	the	following	will	NOT
induce	a	current	in	the	loop?

(A)	moving	the	wire	to	the	right	in	the	plane	of	the	page
(B)	increasing	the	area	of	the	loop
(C)	increasing	the	strength	of	the	magnetic	field
(D)	rotating	the	wire	about	a	diameter
(E)	turning	the	magnetic	field	off

END	OF	DIAGNOSTIC	TEST

	Answers	and	Explanations
1	.	D	—Choices	A	and	E	don’t	make	sense	because	the	direction	of	an	object’s
acceleration	or	velocity	is	essentially	arbitrary—when	solving	a	problem,	you
can	usually	pick	the	“positive”	direction	based	on	convenience.	So	neither
value	must	be	negative.	We	can	rule	out	choice	B	because	we	know	that	a	fast
moving	object	can	slow	down	very	gradually.	And	there’s	no	reason	why	you
need	multiple	forces	to	make	an	object	slow	down,	so	that	gets	rid	of	choice



C.

2	.	E	—When	an	object	is	thrown	in	the	absence	of	air	resistance	near	the
surface	of	the	Earth,	its	acceleration	in	the	vertical	direction	is	always	g	,	the
acceleration	due	to	gravity,	which	has	a	magnitude	of	9.8	m/s2	.	The
acceleration	due	to	gravity	is	directed	down,	toward	the	Earth.	So	the	ball’s
acceleration	is	−9.8	m/s2	.

3	.	D	—The	vertical	component	of	a	vector	is	the	magnitude	of	the	vector	times
the	sine	of	the	angle	measured	to	the	horizontal;	in	this	case,	F	1	sin	θ	.

4	.	D	—Something	that	moves	in	a	straight	line	at	constant	speed	is	in
equilibrium.	So,	the	sum	of	left	forces	has	to	equal	the	sum	of	right	forces.

5	.	C	—On	an	incline,	the	weight	vector	parallel	to	the	plane	goes	with	the	sine
of	the	plane’s	angle.	g	sin	40°	is	an	acceleration,	not	a	weight.

6	.	E	—Because	the	weight	is	the	only	force	acting	parallel	to	the	plane,	mg	sin
40°	=	ma	,	so	a	=	g	sin	40°.	This	acceleration	is	down	the	plane,	in	the
direction	of	the	net	force.	Yes,	the	block	is	moving	up	the	plane,	but	the	block
is	slowing	down,	and	so	the	acceleration	must	be	in	the	opposite	direction
from	the	velocity.

7	.	D	—All	forms	of	energy	are	scalar	quantities:	potential	energy,	kinetic
energy,	work,	internal	energy	of	a	gas.	Energy	doesn’t	have	direction.

8	.	B	—Work	is	force	times	parallel	displacement.	The	force	acting	here	is	the
force	of	friction,	and	the	displacement	is	2.0	m	parallel	to	the	force	of
friction.	The	friction	force	is	equal	to	the	coefficient	of	friction	(0.10)	times
the	normal	force.	The	normal	force	in	this	case	is	equal	to	the	block’s	weight
of	5	N	(because	no	other	vertical	forces	act).	Combining	all	these	equations,
the	work	done	is	(2.0	m)	(0.1)(5	N)	=	1.0	J.

9	.	D	—Look	at	the	total	energy	of	the	block,	which	is	equal	to	the	potential
energy	plus	the	kinetic	energy.	Initially,	the	total	energy	was	2200	J.	At	the
end,	the	total	energy	was	1000	J.	What	happened	to	the	extra	1200	J?
Because	friction	was	the	only	external	force	acting,	friction	must	have	done
1200	J	of	work.

10	.	B	—Impulse	is	equal	to	the	change	in	an	object’s	momentum.	Ball	1	changes
its	momentum	from	something	to	zero.	But	ball	2	changes	its	momentum
from	something	to	zero,	and	then	to	something	in	the	other	direction.	That’s	a



bigger	momentum	change	than	if	the	ball	had	just	stopped.	(If	we	had	been
asked	to	find	the	force	on	the	ball,	then	we’d	need	the	time	of	collision,	but
the	impulse	can	be	found	without	reference	to	force	or	time.)

11	.	B	—Momentum	is	a	vector	,	meaning	direction	is	important.	Call	the
rightward	direction	positive.	Ball	A	has	+5	kg·m/s	of	momentum;	ball	B	has
−2	kg·m/s	of	momentum.	Adding	these	together,	we	get	a	total	of	+3	kg·m/s.
This	answer	is	equivalent	to	3	N·s	to	the	right.	(The	units	kg·m/s	and	N·s	are
identical.)

12	.	D	—The	law	of	conservation	of	momentum	requires	that	all	objects	involved
in	a	collision	be	taken	into	account.	An	object	can	lose	momentum,	as	long	as
that	momentum	is	picked	up	by	some	other	object.

13	.	C	—“Uniform”	circular	motion	means	that	an	object’s	speed	must	be
constant.	But	velocity	includes	direction,	and	the	direction	of	travel	changes
continually.	The	velocity	of	the	object	is	always	along	the	circle,	but	the
acceleration	is	centripetal;	i.e.,	center-seeking.	The	direction	toward	the
center	of	the	circle	is	perpendicular	to	the	path	of	the	object	everywhere.

14	.	A	—Period	is	equal	to	1/frequency,	regardless	of	the	amplitude	of	harmonic
motion.

15	.	E	—The	maximum	displacement	is	the	amplitude.	Energy	of	a	spring	is	½kx
2	.	So,	at	x	=	A	,	the	energy	is	½kA	2	.

16	.	E	—An	object’s	rotational	inertia	can	be	thought	of	as	a	rotational	equivalent
of	mass;	rotational	inertia,	like	mass,	is	a	property	of	an	object	and	the	axis
about	which	it	rotates.	Rotational	inertia	does	not	depend	on	the	speed	of
rotation.	Angular	momentum,	equal	to	rotational	inertia	times	angular
velocity,	does	depend	on	the	speed	of	rotation.	Because	the	rotation	rate
doubled,	so	did	angular	momentum.

17	.	C	—In	an	orbit,	gravity	provides	a	centripetal	force.	So,	GmM/r	2	=	mv	2	/r	.
Solving	for	v	,

where	M	is	the	mass	of	the	moon.	If	the	speed	gets	bigger,	then	the	radius	of
orbit	(in	the	denominator)	must	get	smaller	to	compensate.



18	.	E	—Most	of	these	statements	drive	at	the	fundamental	principle	that	the
value	of	an	electric	potential	can	be	set	to	anything;	it	is	only	the	difference	in
electric	potential	between	two	points	that	has	a	physical	usefulness.	Usually
potential	is	set	to	zero	either	at	the	ground	or,	for	isolated	point	charges,	a
very	long	distance	away	from	the	charges.	But	potential	can,	in	fact,	be	set	to
zero	anywhere,	meaning	that	the	potential	could	easily	be	less	than	zero
everywhere	on	a	wire.	(And	a	proton,	a	positive	charge,	is	forced	from	high
to	low	potential,	not	the	other	way	around.)

19	.	E	—This	is	a	uniform	electric	field.	The	force	on	a	charge	in	an	electric	field
is	given	by	F	=	qE	.	Therefore,	as	long	as	the	electric	field	is	the	same	at	all
three	points,	the	force	on	the	charge	is	the	same	as	well.

20	.	C	—Only	forces	can	go	on	free-body	diagrams,	and	the	electric	field	is	not
itself	a	force.	The	force	provided	by	an	electric	field	is	qE	;	the	weight	of	the
electron	is	mg	.

21	.	D	—Capacitance	is	a	property	of	the	structure	of	the	capacitor.	Changing	the
charge	on	(or	the	voltage	across)	a	capacitor	does	not	change	the	capacitance.
The	capacitance	of	a	parallel-plate	capacitor	is	given	by	the	equation

Decreasing	d	,	the	distance	between	the	plates,	will	increase	the	capacitance.

22	.	B	—These	resistors	are	in	parallel	with	the	battery;	thus,	they	both	must	take
the	voltage	of	the	battery,	10	V.	The	total	current	in	the	circuit	is	2.0	A,	but
that	current	splits	between	the	two	resistors,	leaving	1.0	A	through	each.	This
can	also	be	determined	by	a	direct	application	of	Ohm’s	law—because	we
know	both	the	voltage	and	resistance	for	each	resistor,	divide	V/R	to	get	the
current.

23	.	E	—Use	the	right-hand	rule	for	the	force	on	a	charged	particle	in	a	magnetic
field:	point	your	right	hand	in	the	direction	of	the	velocity,	curl	your	fingers
toward	the	magnetic	field,	and	your	thumb	points	into	the	page.	The	charge	is
positive,	so	your	thumb	points	in	the	direction	of	the	force.

24	.	B	—This	question	uses	the	right-hand	rule	for	the	magnetic	field	produced
by	a	current-carrying	wire.	Point	your	thumb	in	the	direction	of	the	current;
your	fingers	wrap	around	the	wire	in	the	direction	of	the	magnetic	field.	To



the	wire’s	left,	your	fingers	point	out	of	the	page.

25	.	A	—Only	a	changing	magnetic	flux	induces	a	current.	Flux	is	given	by	BA
cos	θ	,	where	B	is	the	magnetic	field,	and	A	is	the	area	of	the	loop	of	wire.
Obviously,	then,	choices	B,	C,	and	E	change	the	flux	and	induce	a	current.
Choice	D	produces	a	flux	by	changing	θ	,	the	angle	at	which	the	field
penetrates	the	loop	of	wire.	In	choice	A,	no	current	is	induced	because	the
field	doesn’t	change	and	always	points	straight	through	the	loop.

Interpretation:	How	Ready	Are	You?
Now	that	you	have	finished	the	diagnostic	exam	and	checked	your	answers,	it	is
time	to	try	to	figure	out	what	it	all	means.	First,	remember	that	getting	only
about	60%	of	the	answers	correct	will	give	you	a	5	on	the	AP	exam;	about	30–
40%	correct	is	the	criterion	for	a	qualifying	score	of	3.	You’re	not	supposed	to
get	90%	correct!	So	relax	and	evaluate	your	performance	dispassionately.

Next,	see	if	there	are	any	particular	areas	in	which	you	struggled.	For
example,	were	there	any	questions	that	caused	you	to	think	something	such	as,	“I
learned	this	…	when?!?	”	or	“What	the	heck	is	this?!?	”	If	so,	put	a	little	star
next	to	the	chapter	that	contains	the	material	in	which	this	occurred.	You	may
want	to	spend	a	bit	more	time	on	that	chapter	during	your	review	for	this	exam.
It	is	quite	possible	that	you	never	learned	some	of	the	material	in	this	book.	Not
every	class	is	able	to	cover	all	the	same	information.

In	general,	try	to	interpret	your	performance	on	this	test	in	a	productive
manner.	If	you	did	well,	that’s	terrific	…	but	don’t	get	overconfident	now.
There’s	still	a	lot	of	material	to	review	before	you	take	the	Practice	Exams	in
Step	5	—let	alone	the	real	AP	exam.	If	you	don’t	feel	good	about	your
performance,	now	is	the	time	to	turn	things	around.	You	have	a	great	opportunity
here—time	to	prepare	for	the	real	exam,	a	helpful	review	book,	and	a	sense	of
what	topics	you	need	to	work	on	most—so	use	it	to	its	fullest.	Good	luck!
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CHAPTER 	 6

Memorizing	Equations	in	the	Shower

IN	THIS	CHAPTER

Summary:	Learn	how	to	memorize	all	the	equations	you	absolutely	need	to	know	to	ace	the	AP	Physics
exam.

Key	Ideas
		Learn	why	memorizing	equations	is	so	critical.
		Learn	equations	by	using	them:	practice	solving	problems	without	looking	up
the	equations	you	need.
		Use	mnemonic	devices	to	help	you	remember.
		Practice	speed:	see	how	many	equations	you	can	say	in	four	minutes.
		Use	visual	reminders:	put	a	copy	of	the	equation	sheet	somewhere	you’ll	see
it	often.

Can	You	Ace	This	Quiz?
Instructions:	We’ll	give	you	a	prompt,	you	tell	us	the	equation.	Once	you’ve
finished,	check	your	answers	with	the	key	at	the	end	of	this	chapter.

1	.	Coefficient	of	friction	in	terms	of	Ff



2	.	Momentum
3	.	Two	equations	for	impulse
4	.	Two	equations	for	mechanical	power
5	.	Two	equations	for	work
6	.	Period	of	a	mass	on	a	spring
7	.	Three	kinematics	equations	for	constant	acceleration
8	.	Centripetal	acceleration
9	.	Kinetic	energy
10	.	Gravitational	force	of	one	planet	on	another
11	.	Ohm’s	Law
12	.	Power	in	a	circuit
13	.	Magnetic	force	on	a	charge
14	.	Magnetic	force	on	a	wire
15	.	Electric	force	on	a	charge
16	.	Electric	potential	energy
17	.	Magnetic	field	around	a	long,	straight,	current-carrying	wire
18	.	Time	constant	for	an	RC	circuit
19	.	Resistance	of	a	wire	in	terms	of	its	dimensions
20	.	Electric	field	due	to	a	point	charge

So,	How	Did	You	Do?
Grade	yourself	according	to	this	scale.

You	may	think	we’re	joking	about	our	grading	system,	but	we’re	completely
serious.	Knowing	your	equations	is	absolutely	imperative.	Even	if	you	missed
one	question	on	the	quiz,	you	need	to	study	your	equations.	Right	now!	A
student	who	is	ready	to	take	the	AP	exam	is	one	who	can	ace	an	“equations	quiz”
without	even	thinking	about	it.	How	ready	are	you?

Equations	Are	Crucial



It’s	easy	to	make	an	argument	against	memorizing	equations.	For	starters,	you’re
given	all	the	equations	you	need	on	the	exam.	And	besides,	you	can	miss	a
whole	bunch	of	questions	on	the	test	and	still	get	a	5.

But	equations	are	the	nuts	and	bolts	of	physics.	They’re	the	fundamentals.
They	should	be	the	foundation	on	which	your	understanding	of	physics	is	built.
Not	knowing	an	equation—even	one—shows	that	your	knowledge	of	physics	is
incomplete.	And	every	question	on	the	AP	exam	assumes	complete	knowledge
of	physics.

Now	you	get	equation	sheets	on	the	multiple	choice	section,	too.

What	About	the	Free-Response	Section?
The	free-response	questions	test	your	ability	to	solve	complex,	multistep
problems.	They	also	test	your	understanding	of	equations.	You	need	to	figure	out
which	equations	to	use	when	and	how.	The	makers	of	the	test	are	being	nice	by
giving	you	the	equation	sheet—they’re	reminding	you	of	all	the	equations	you
already	know	in	case	you	cannot	think	of	that	certain	equation	that	you	know
would	be	just	perfect	to	solve	a	certain	problem.	But	the	sheet	is	intended	to	be
nothing	more	than	a	reminder.	It	will	not	tell	you	when	to	use	an	equation	or
which	equation	would	be	best	in	solving	a	particular	problem.	You	have	to	know
that.	And	you	will	know	that	only	if	you	have	intimate	knowledge	of	every
equation.

Exam	tip	from	an	AP	Physics	veteran:
Don’t	use	the	equation	sheet	to	“hunt	and	peck.”	The	sheet	can	remind	you	of
subtle	things;	for	example,	does	the	magnetic	field	due	to	a	wire	have	an	r	or
an	r	2	in	the	denominator?	But	if	you	don’t	have	the	general	idea	that	the
magnetic	field	depends	on	current	and	gets	weaker	farther	away	from	a	wire,
then	you	won’t	recognize

even	if	you	go	hunting	for	it.

—Wyatt,	college	freshman	in	engineering



Some	Examples
We	mentioned	in	Step	2	that	some	questions	on	the	AP	exam	are	designed	solely
to	test	your	knowledge	of	equations.	If	you	know	your	equations,	you	will	get
the	question	right.	Here’s	an	example.

A	pendulum	of	length	L	swings	with	a	period	of	3	s.	If	the	pendulum’s	length
is	increased	to	2L	,	what	will	its	new	period	be?

(A)	3/ 	s

(B)	3	s

(C)	3 	s

(D)	6	s

(E)	12	s

The	answer	is	(C).	The	equation	for	a	pendulum’s	period	is

since	L	is	in	the	numerator	and	under	the	square	root,	multiplying	L	by	2
multiplies	the	period	by	 	.

Of	course,	the	multiple-choice	section	will	not	be	the	only	part	of	the	exam
that	tests	your	knowledge	of	equations.	Often,	a	part	of	a	free-response	question
will	also	test	your	ability	to	use	an	equation.	For	example,	check	out	this
problem.

Four	charges	+Q	are	arranged	in	a	square	of	side	length	l	.

(a)		What	is	the	magnitude	of	the	electric	field	due	to	just	one	of	these	charges
at	the	center	of	the	square?

Yes,	later	in	the	problem	you’ll	be	asked	to	add	vectors	to	find	E	due	to	a
bunch	of	charges.	Ugh.	But	you	can	still	score	some	easy	points	here	if	you



simply	remember	that	old	standby,	 	.

Memorizing	equations	will	earn	you	points.	It’s	that	simple.

Treat	Equations	Like	Vocabulary
Think	about	how	you	would	memorize	a	vocabulary	word:	for	example,
“boondoggle.”	There	are	several	ways	to	memorize	this	word.	The	first	way	is	to
say	the	word	out	loud	and	then	spell	it:	“Boondoggle:	B-O-O-N-D-O-G-G-L-E.”
The	second	way	is	to	say	the	word	and	then	say	its	definition:	“Boondoggle:	An
unproductive	or	impractical	project,	often	involving	graft.”	If	you	were	to	use
the	first	method	of	memorizing	our	word,	you	would	become	a	great	speller,	but
you	would	have	no	clue	what	“boondoggle”	means.	As	long	as	you	are	not
preparing	for	a	spelling	bee,	it	seems	that	the	second	method	is	the	better	one.

This	judgment	may	appear	obvious.	Who	ever	learned	vocabulary	by
spelling	it?	The	fact	is,	this	is	the	method	most	people	use	when	studying
equations.

Let’s	take	a	simple	equation,	vf	=	vo	+	at	.	An	average	physics	student	will
memorize	this	equation	by	saying	it	aloud	several	times,	and	that’s	it.	All	this
student	has	done	is	“spelled”	the	equation.

But	you’re	not	average.	1	Instead,	you	look	at	the	equation	as	a	whole,
pronouncing	it	like	a	sentence:	“V	f	equals	v	naught	plus	at	.”	You	then
memorize	what	it	means	and	when	to	use	it:	“This	equation	relates	initial
velocity	with	final	velocity.	It	is	valid	only	when	acceleration	is	constant.”	If	you
are	really	motivated,	you	will	also	try	to	develop	some	intuitive	sense	of	why	the
equation	works.	“Of	course,”	you	say,	“this	makes	perfect	sense!	Acceleration	is
just	the	change	in	velocity	divided	by	the	change	in	time.	If	acceleration	is
multiplied	by	the	change	in	time,	then	all	that’s	left	is	the	change	in	velocity

So	the	final	velocity	of	an	object	equals	its	initial	velocity	plus	the	change	in
velocity.”

The	first	step	in	memorizing	equations,	then,	is	to	learn	them	as	if	you	were
studying	for	a	vocabulary	test,	and	not	as	if	you	were	studying	for	a	spelling	bee.



Helpful	Tips
Memorizing	equations	takes	a	lot	of	time,	so	you	cannot	plan	on	studying	your
equations	the	night	before	the	AP	exam.	If	you	want	to	really	know	your
equations	like	the	back	of	your	hand,	you	will	have	to	spend	months	practicing.
But	it’s	really	not	that	bad.	Here	are	four	tips	to	help	you	out.

Tip	1:	Learn	through	use.	Practice	solving	homework	problems	without
looking	up	equations.

Just	as	with	vocabulary	words,	you	will	only	learn	physics	equations	if	you	use
them	on	a	regular	basis.	The	more	you	use	your	equations,	the	more	comfortable
you	will	be	with	them,	and	that	comfort	level	will	help	you	on	the	AP	test.

The	reason	you	should	try	solving	homework	problems	without	looking	up
equations	is	that	this	will	alert	you	to	trouble	spots.	When	you	can	look	at	an
equations	sheet,	it’s	easy	to	fool	yourself	into	a	false	sense	of	confidence:	“Oh,
yeah,	I	knew	that	spring	potential	energy	is	½kx	2	.”	But	when	you	don’t	have	an
equations	sheet	to	look	at,	you	realize	that	either	you	know	an	equation	or	you
don’t.	So	if	you	solve	homework	problems	without	looking	up	equations,	you’ll
quickly	figure	out	which	ones	you	know	and	which	you	don’t;	and	then	you	can
focus	your	studying	on	those	equations	that	need	more	review.

Tip	2:	Use	mnemonic	devices.

Use	whatever	tricks	necessary	to	learn	an	equation.	For	example,	it	is	often	hard
to	remember	that	the	period	of	a	pendulum	is



and	not

So	make	up	some	trick,	like	“The	terms	go	in	backward	alphabetical	order:	T
wo-pi	r	oot	L	over	g	.”	Be	creative.

Tip	3:	The	Four-Minute	Drill.

Practice	speed.	Say	the	equations	as	fast	as	you	can,	then	say	them	faster.	Start	at
the	top	of	the	AP	equations	sheet	2	and	work	your	way	down.	Have	someone
quiz	you.	Let	that	person	give	you	a	lead,	like	“Period	of	a	pendulum,”	and	you
respond	“Two-pi	root	L	over	g	.”	See	how	many	equations	you	can	rattle	off	in
four	minutes.	We	call	it	the	Four-Minute	Drill.

This	is	much	more	fun	with	a	group;	for	example,	try	to	persuade	your
teacher	to	lead	the	class	in	a	four-minute	drill.	Not	only	will	you	get	out	of	four
minutes	of	lecture,	but	you	may	also	be	able	to	bargain	with	your	teacher:	“Sir,	if
we	can	rattle	off	50	equations	in	the	Four-Minute	Drill,	will	you	exempt	us	from
doing	tonight’s	problems?”	3

Tip	4:	Put	a	copy	of	the	equations	sheet	somewhere	visible.



See	how	the	equations	sheet	looks	next	to	your	bathroom	mirror.	Or	in	your
shower	(laminated,	of	course).	Or	taped	to	your	door.	Or	hung	from	your	ceiling.
You’d	be	surprised	how	much	sparkle	it	can	add	to	your	décor.	You’d	also	be
surprised	how	easy	it	will	be	to	memorize	equations	if	you	are	constantly
looking	at	the	equations	sheet.

So	what	are	you	waiting	for?	Start	memorizing!

	Answer	Key	to	Practice	Quiz

1	.	

2	.	p	=	mv

3	.	I	=	Δp	and	I	=	F	Δt

4	.	

5	.	W	=	Fd	and	W	net	=	ΔKE

6	.	

7	.	

8	.	

9	.	KE	=	½mv	2

10	.	

11	.	V	=	IR

12	.	P	=	IV

13	.	F	=	qvB	sin	θ



14	.	F	=	ILB	sin	θ

15	.	F	=	qE

16	.	U	=	qV

17	.	

18	.	τ	=	RC

19	.	

20	.	



1	In	fact,	just	because	you	bought	this	book,	we	think	that	you’re	way	better	than	average.	“Stupendous”
comes	to	mind.	“Extraordinary,	Gullible.”	Er	…	uh	…	cross	that	third	one	out.

2	We’ve	included	a	copy	of	this	sheet	at	the	end	of	the	book,	along	with	a	sheet	of	prompts	to	guide	you
through	a	four-minute	drill.

3	“No.”



CHAPTER 	 7

How	to	Approach	Each	Question	Type

IN	THIS	CHAPTER

Summary:	Become	familiar	with	the	three	types	of	questions	on	the	exam:	multiple-choice,	free-response,
and	lab	questions.	Pace	yourself,	and	know	when	to	skip	a	question.

Key	Ideas
		You	don’t	need	a	calculator	to	figure	out	multiple	choice	questions,	even
though	you	are	allowed	a	calculator.
		There	are	five	categories	of	multiple-choice	questions.	Two	of	these	involve
numbers:	easy	calculations	and	order-of-magnitude	estimates.	The	other	three
don’t	involve	numbers	at	all:	proportional	reasoning	questions,	concept
questions,	and	questions	asking	for	the	direct	solution	with	variables	only.
		Free-response	questions	test	your	understanding	of	physics,	not	obscure
theories	or	technical	terms.
		You	can	get	partial	credit	on	free-response	questions.
		Each	free-response	section	will	contain	at	least	one	question	that	involves
experiment	design	and	analysis—in	other	words,	a	lab	question.
		Check	out	our	six	steps	to	answering	lab	questions	successfully.

How	to	Approach	the	Multiple-Choice	Section



The	AP	exam	is	very,	very	straightforward.	There	are	no	trick	questions,	no
unreasonably	difficult	problems,	no	math	beyond	the	clearly	articulated	scope	of
the	course.	The	multiple	choice	questions	test	your	physics	knowledge	in	a
variety	of	ways—a	glance	through	the	practice	exam	in	this	book,	as	well	as
reading	through	this	section,	can	give	you	a	sense	of	the	types	of	questions
asked.

Until	2015,	calculators	and	the	equation	sheet	were	not	provided	during	the
multiple	choice	section.	Now,	though,	you	can	use	calculators	and	equation
sheets	on	the	whole	exam.

Important	point:	The	content	and	style	of	questions	did	not	change,	even
though	the	calculator	policy	did	.

The	point	is,	you	do	not	need	to	use	a	calculator	on	the	multiple	choice
section.	No	multiple	choice	question	requires	significant	number	crunching.
More	importantly,	though,	understand	that

Physics	is	NOT	about	numbers.

Yes,	you	must	use	numbers	occasionally.	Yet	you	must	understand	that	the
number	you	get	in	answer	to	a	question	is	always	subordinate	to	what	that
number	represents.

Many	misconceptions	about	physics	start	in	math	class.	There,	your	teacher
shows	you	how	to	do	a	type	of	problem,	then	you	do	several	variations	of	that
same	problem	for	homework.	The	answer	to	one	of	these	problems	might	be
30,000,000,	another	16.5.	It	doesn’t	matter	…	in	fact,	the	book	(or	your	teacher)
probably	made	up	random	numbers	to	go	into	the	problem	to	begin	with.	The
“problem”	consists	of	manipulating	these	random	numbers	a	certain	way	to	get	a
certain	answer.

In	physics,	though,	every	number	has	meaning	.	Your	answer	will	not	be
30,000,000;	the	answer	may	be	30,000,000	electron-volts,	or	30,000,000
seconds,	but	not	just	30,000,000.	If	you	don’t	see	the	difference,	you’re	missing
the	fundamental	point	of	physics.

We	use	numbers	to	represent	REAL	goings	on	in	nature.	30,000,000	eV	(or,
30	MeV)	is	an	energy;	this	could	represent	the	energy	of	a	particle	in	a
multibillion-dollar	accelerator,	but	it’s	much	too	small	to	be	the	energy	of	a	ball



dropped	off	of	a	building.	30,000,000	seconds	is	a	time;	not	a	few	hours	or	a	few
centuries,	but	about	one	year.	These	two	“30,000,000”	responses	mean	entirely
different	things.	If	you	simply	give	a	number	as	an	answer,	you’re	doing	a	math
problem.	It	is	only	when	you	can	explain	the	meaning	of	any	result	that	you	may
truly	claim	to	understand	physics.

So	How	Do	I	Deal	with	All	the	Numbers	on	the	Test?
You	see,	in	virtually	all	cases	the	test	authors	still	assume	that	you	have	no
calculator.	Thus,	a	large	majority	of	the	multiple-choice	questions	involve	no
numbers	at	all!	And	those	questions	that	do	use	numbers	will	never	require	more
than	the	simplest	manipulations.	Here	is	a	question	you	will	never	see	on	the	AP
test:

What	is	the	magnitude	of	the	magnetic	field	a	distance	of	1.5	m	away	from	a
long,	straight	wire	that	carries	2.3	A	of	current?

(A)		3.066	×	10–6	T
(B)		3.166	×	10–6	T
(C)		3.102	×	10–6	T
(D)		2.995	×	10–6	T
(E)		3.109	×	10–6	T

Yes,	we	know	you	might	have	seen	this	type	of	problem	in	class.	But	it	will	not
be	on	the	AP	exam.	Why	not?	Plugging	numbers	into	a	calculator	is	not	a	skill
being	tested	by	this	examination.	(You	should	have	recognized	that	the	equation
necessary	to	solve	this	problem	is

though.)	We	hope	you	see	that,	without	a	calculator,	it	is	pointless	to	try	to	get	a
precise	numerical	answer	to	this	kind	of	question.

Fine	…	Then	What	Kinds	of	Questions	Will	Be	Asked	on	the
Multiple-Choice	Section?
Fair	enough.	We	break	down	the	kinds	of	questions	into	five	categories.	First,



the	categories	of	questions	that	involve	numbers:

1.	easy	calculations
2.	order	of	magnitude	estimates

Most	questions,	though,	do	NOT	involve	numbers	at	all.	These	are:

3.	proportional	reasoning
4.	concept	questions,	subdivided	into
a.	“Why?”	questions,	and
b.	diagram	questions

5.	direct	solution	with	variables

Okay,	let’s	take	a	look	at	a	sample	of	each	of	these.

Easy	Calculations
These	test	your	knowledge	of	formulas.

A	ball	is	dropped	from	a	45-m-high	platform.	Neglecting	air	resistance,	how
much	time	will	it	take	for	this	ball	to	hit	the	ground?

(A)		1.0	s
(B)		2.0	s
(C)		3.0	s
(D)		4.0	s
(E)		5.0	s

You	should	remember	the	kinematics	equation:	 	.	Here	the
initial	velocity	is	zero	because	the	ball	was	“dropped.”	The	distance	involved	is
45	meters,	and	the	acceleration	is	caused	by	gravity,	10	m/s2	.	The	solution	must
be	found	without	a	calculator,	but	notice	how	easy	they	have	made	the	numbers:



Everything	here	can	be	done	easily	without	a	calculator,	especially	if	you
remember	to	use	10	m/s2	for	g	.	No	problem!

Order	of	Magnitude	Estimates
These	test	your	understanding	of	the	size	of	things,	measurements,	or	just
numbers.

Which	of	the	following	best	approximates	the	gravitational	force	experienced
by	a	high	school	student	due	to	the	student	sitting	in	an	adjacent	seat?

(A)		101	N
(B)		10–8	N
(C)		10–18	N
(D)		10–28	N
(E)		10–38	N

Wow,	at	first	you	have	no	idea.	But	let’s	start	by	looking	at	the	answer	choices.
Notice	how	widely	the	choices	are	separated.	The	second	choice	is	a	hundred
millionth	of	a	newton;	the	third	choice	is	a	billionth	of	a	billionth	of	a	newton.
Clearly	no	kind	of	precise	calculation	is	necessary	here.

The	answer	can	be	calculated	with	Newton’s	law	of	gravitation	 	.	You

complain:
“They	didn’t	give	me	any	information	to	plug	in.	It’s	hopeless!”	Certainly	not.
The	important	thing	to	remember	is	that	you	have	very	little	need	for	precision
here.	This	is	a	rough	estimate!	Just	plug	in	a	power	of	10	for	each	variable	.



Watch:

1.			G	:	The	table	of	information	says	that	the	constant	G	is	6.67	×	10−11	N·m2

/kg2	.	So	we	just	use	10−11	in	standard	units.
2.			m	1	,	m	2	:	It	doesn’t	say	whether	this	is	Olympic	gymnast	Shawn	Johnson

(41	kg)	or	football	offensive	lineman	John	Urschel	(137	kg).	What	do	I	do?
Just	use	101	or	102	kg.	If	you’re	really	concerned,	you	can	make	one	101	kg
and	one	102	kg.	It	won’t	matter.

3.			r	:	The	distance	between	desks	in	any	classroom	will	be	more	than	a	few	tens
of	centimeters,	but	less	than	a	few	tens	of	meters.	Call	it	100	meters	and	be
done	with	it.

Okay,	we’re	ready	for	our	quick	calculation:

(You	remember	that	to	multiply	powers	of	10,	just	add	the	exponents;	to	divide,
subtract	the	exponents.)

You	still	object,	“But	when	I	use	my	calculator	and	plug	in	more	precise
values,	I	get	3.67	×	10−7	N.	Or,	if	I	use	both	masses	as	Shawn	Johnson’s,	I	get
1.1	×	10−7	N.”	Look	at	the	choices	again;	the	second	answer	choice	is	still	the
best	answer.	We	got	that	without	a	calculator—and	a	lot	quicker,	too.

Proportional	Reasoning
These	also	test	your	knowledge	of	how	to	use	equations,	except	that	you	don’t
have	to	plug	in	numerical	values	to	solve	them.

Planet	X	is	twice	as	massive	as	Earth,	but	its	radius	is	only	half	of	Earth’s
radius.	What	is	the	acceleration	due	to	gravity	on	Planet	X	in	terms	of	g	,	the
acceleration	due	to	gravity	on	Earth?

(A)		¼	g
(B)		½	g
(C)		g
(D)		4g
(E)		8g



First	we	need	to	know	what	equation	to	use.	We	know	that	the	force	that	a
planet	exerts	on	a	small	mass	m	1	near	its	surface	is

Using	Newton’s	second	law	(F	net	=	ma	),	we	know	that	the	acceleration	of	the
small	mass	is	simply

One	method	of	solution	would	be	to	plug	in	the	actual	mass	and	radius	of	the
new	planet.	But	no	fair,	you	say,	the	mass	of	the	Earth	isn’t	given	on	the
constants	sheet.	How	do	I	find	the	mass	of	the	planet?

You	don’t!
Use	proportional	reasoning	skills	instead,	so:

“The	mass	of	the	planet	is	twice	that	of	the	Earth.	Since	mass	is	in	the
numerator	of	the	equation	for	acceleration,	doubling	the	mass	of	the
planet	must	double	the	acceleration	.
“Okay,	but	the	radius	of	this	planet	is	also	different.	Radius	is	in	the

denominator,	so	a	smaller	radius	means	a	bigger	acceleration.	The	radius
of	the	new	planet	is	half	of	the	radius	of	the	Earth.	Therefore,	the
acceleration	must	be	doubled.	Almost	there	…	because	the	radius	is
SQUARED	in	the	denominator,	the	acceleration	must	be	doubled	AGAIN
.
“So	what	is	my	final	answer?	The	mass	causes	acceleration	to	double.

The	radius	causes	the	acceleration	to	double,	and	then	to	double	again.
So	the	total	acceleration	is	multiplied	by	a	factor	of	8.	The	acceleration
on	this	planet	is	8g.”

In	the	much	more	concise	language	of	algebra,	your	reasoning	might	look	like
this:



What	if	the	answer	choices	had	been	like	this:

(A)	2.5	m/s2

(B)	4.9	m/s2

(C)	9.8	m/s2

(D)	19.6	m/s2

(E)	78.4	m/s2

Is	the	problem	any	different?	(Answer:	no.)

Concept	Questions:	“WHY?”
Many	multiple-choice	questions	involve	no	calculations	and	no	formulas.	These
test	your	understanding	of	vocabulary	and	explanations	for	physical	phenomena.

Two	identical	train	cars	move	toward	each	other,	each	with	the	same	speed	as
the	other.	When	the	train	cars	collide,	they	stick	together	and	remain	at	rest.
Which	of	the	following	fundamental	physics	principles	can	best	be	used	to
explain	why	the	attached	cars	cannot	move	after	the	collision?

(A)		Conservation	of	mechanical	energy
(B)		Conservation	of	linear	momentum
(C)		Conservation	of	angular	momentum
(D)		Conservation	of	mass
(E)		Conservation	of	rotational	energy

The	direct	answer	to	this	question	is	B:	conservation	of	linear	momentum	applies
to	all	collisions.	The	cars	had	equal	momentum	in	opposite	directions,	so	the	net
momentum	before	collision	was	zero;	thus,	the	cars	may	not	have	any
momentum	after	collision.	Kinetic	energy	is	a	scalar,	having	no	direction,	and	so
kinetic	energy	of	two	moving	objects	cannot	cancel	to	zero.	Mechanical	energy
was	not	conserved,	because	kinetic	energy	was	lost	in	the	collision.

But	even	if	you	have	a	hesitation	about	the	difference	between	momentum
and	kinetic	energy	conservation,	you	can	still	get	close	to	the	right	answer	by
eliminating	obvious	“stupidicisms.”	Look	at	E:	perhaps	you	recognize	that
there’s	no	such	thing	as	“conservation	of	rotational	energy.”	Or	likely	you	see
right	away	that	conservation	of	mass,	while	a	legitimate	concept,	is	usually
relevant	in	a	chemical	process	or	fluid	dynamics	and	can	have	little	bearing	on



the	speed	of	train	cars	in	a	collision.

Concept	Questions:	Diagrams
These	ask	you	a	simple	question	based	(obviously)	on	a	diagram.

A	particle	experiences	a	potential	energy	U	as	a	function	of	position	x	as
shown	in	the	diagram	above.	At	which	position	is	the	particle	in	a	state	of
unstable	equilibrium?

(A)		A
(B)		B
(C)		C
(D)		D
(E)		E

For	these,	you	either	know	what	to	do	with	the	diagram	or	you	don’t.	Here	you,
of	course,	remember	that	equilibrium	is	represented	on	an	energy-position
diagram	by	a	horizontal	slope	and	that	unstable	equilibrium	requires	the	energy-
position	diagram	to	be	at	a	maximum.	Thus,	the	answer	is	C.

Three	Things	You	Can	Do	with	a	Graph
You	could	see	so,	so	many	graphs	on	the	AP	exam…	.	It’s	often	difficult	to



remember	which	graph	means	what.	But	if	you	know	your	equations,	you	can
usually	figure	out	how	to	interpret	any	graph	you	are	faced	with.	Why?
Because	there	are	pretty	much	ONLY	three	things	you	can	do	with	a	graph:

1.				Take	the	slope.
2.				Find	the	area	under	the	graph.
3.				Read	off	an	axis.

For	example,	an	AP	Physics	C	exam	question	described	an	experiment	in
which	a	solenoid	was	stretched	to	vary	the	number	of	turns	per	length,	n	.	At
constant	current,	the	magnetic	field	inside	was	plotted	as	a	function	of	n	;	the
question	asked	for	an	experimental	value	of	the	permeability	of	free	space	μ	0
.	Chances	are	that	you’ve	never	done	this	experiment	and	that	you’ve	never
seen	this	particular	graph.	But	you	do	remember	your	equations:	the	magnetic

field	of	a	solenoid	is	B	=	μ	0	nI	.	Solving	for	μ	0	,	 	.

The	slope	of	this	graph	is	 	.	Therefore,	μ	0	must	be	the	slope	of	the	graph

divided	by	the	current	in	the	solenoid.
Similarly,	imagine	a	graph	of	force	vs.	time	on	a	question	that	asks	for

impulse.	Since	impulse	is	equal	to	force	times	time	interval	(Δp	=	F	Δt	),	then
impulse	must	be	the	area	under	the	graph.

Finally,	if	you’re	totally	clueless	about	what	to	do	with	a	graph,	just	try
taking	a	slope	or	an	area,	and	see	what	happens!	You	might	experience	a
revelation.

Other	diagram	questions	might	ask	you	to:

•			use	the	right-hand	rule	to	determine	the	direction	of	a	magnetic	force	on	a
particle

•			identify	the	direction	of	an	electric	or	magnetic	field
•			analyze	the	properties	of	a	circuit
•			recognize	the	correct	free-body	diagram	of	an	object
•			interpret	motion	graphs

Many	other	diagram	questions	are	possible.	Try	making	one	yourself—pick
your	favorite	diagram	from	your	textbook,	and	ask	a	question	about	it.	Chances
are,	you	have	just	written	an	AP	multiple-choice	question.



Direct	Solution	with	Variables
Because	the	AP	test	writers	can’t	ask	you	to	do	any	kind	of	difficult	number
crunching	on	the	multiple-choice	section,	often	they	will	ask	you	to	do	your
problem-solving	using	variables	only.

A	pendulum	of	length	L	is	drawn	back	to	position	P	,	as	shown	in	the	above
diagram,	and	released	from	rest.	The	linear	distance	from	P	to	the	lowest	point
in	the	pendulum’s	swing	is	d	;	the	vertical	distance	from	P	to	the	lowest	point
in	the	swing	is	h	.	What	is	the	maximum	speed	of	this	pendulum	in	terms	of
the	above	variables	and	fundamental	constants?

(A)		

(B)		

(C)		

(D)		

(E)		

“Ugh	…	too	many	letters!”	you	say.	We	disagree.	Solving	this	problem	is	no
different	than	solving	the	same	problem	with	numbers	given.	In	fact,	if	the
variables	bother	you,	try	solving	with	made-up	numbers	first:

Let’s	say	the	height	h	is	5	meters,	and	the	mass	of	the	bob	is	2	kg	…	well,



we	use	conservation	of	energy.	Energy	at	the	top	of	the	swing	is	all
potential,	all	mgh	.	So	that’s	2	×	10	×	5	=	100	J	of	potential	energy.
At	the	bottom,	all	this	energy	is	kinetic.	So	100	 	.	Solving,	v

=	10	m/s.
Now	how	did	we	get	that?	We	set	mgh	=	 	mv	2	,	and	solved	for	v	.	The

masses	cancelled,	so	v	=	square	root	of	2gh	.	Lo	and	behold,	that’s	an
answer	choice!

When	Should	You	Skip	a	Question?
Never.	There	is	no	penalty	for	guessing,	so	guess	away!

Some	Final	Advice	on	Multiple-Choice	Questions

•			Know	your	pace.	Take	the	practice	exams	under	test	conditions	(45	minutes
for	35	questions,	or	some	fraction	thereof).	Are	you	getting	to	all	the
questions?	If	not,	you	are	going	to	need	to	decide	your	strengths	and
weaknesses.	Know	before	the	exam	which	types	of	problems	you	want	to
attempt	first.	Then,	when	you	take	your	exam,	FOLLOW	YOUR	PLAN!

•			The	multiple-choice	questions	do	not	necessarily	start	easy	and	get	harder,	as
do	SAT	questions.	So	if	you	suspect	from	your	practice	that	you	may	be
pressed	for	time,	know	that	problems	on	your	strong	topics	may	be	scattered
throughout	the	exam.	Problem	35	might	be	easier	for	you	than	problem	5,	so
look	at	the	whole	test.

•			Speaking	of	time,	the	AP	test	authors	know	the	time	limit	of	the	exam—you
must	average	a	minute	and	a	half	per	question	in	order	to	answer	everything.
So	they	are	not	going	to	write	a	question	that	really	takes	three	or	four
minutes	to	solve!	You	must	always	look	for	the	approach	to	a	problem	that
will	let	you	solve	quickly.	If	your	approach	won’t	get	you	to	a	solution	in	less
than	two	minutes,	then	either	look	for	another	approach	or	move	on.

•			One	other	alternative	if	you	don’t	see	a	reasonable	direct	approach	to	a
problem:	look	at	the	answer	choices.	Some	might	not	make	any	sense;	for
example,	you	can	eliminate	any	choice	for	a	speed	that	is	faster	than	light,	or	a
couple	of	answer	choices	to	concept	questions	might	contain	obvious	errors.
Guess	from	the	remaining	choices,	and	move	on.

•			Correct	your	practice	exam.	For	any	mistakes,	write	out	an	explanation	of	the
correct	answer	and	why	you	got	it	wrong.	Pledge	to	yourself	that	you	will
never	make	the	same	mistake	twice.



How	to	Approach	the	Free-Response	Section
The	best	thing	about	the	free-response	section	of	the	AP	exam	is	this:	you’ve
been	preparing	for	it	all	year	long!	“Really?”	you	ask.	“I	don’t	remember
spending	much	time	preparing	for	it.”

But	think	about	the	homework	problems	you’ve	been	doing	throughout	the
year.	Every	week,	you	probably	answer	a	set	of	questions,	each	of	which	might
take	a	few	steps	to	solve,	and	we	bet	that	your	teacher	always	reminds	you	to
show	your	work.	This	sounds	like	the	AP	free-response	section	to	us!

The	key	to	doing	well	on	the	free-response	section	is	to	realize	that,	first	and
foremost,	these	problems	test	your	understanding	of	physics.	The	purpose	is	not
to	see	how	good	your	algebra	skills	are,	how	many	fancy-sounding	technical
terms	you	know,	or	how	many	obscure	theories	you	can	regurgitate.	So	all	we’re
going	to	do	in	this	section	is	give	you	a	few	suggestions	about	how,	when	you
work	through	a	free-response	question,	you	can	communicate	to	the	AP	graders
that	you	understand	the	concepts	being	tested.	If	you	can	effectively
communicate	your	understanding	of	physics,	you	will	get	a	good	score.

What	Do	the	Graders	Look	For?
Before	grading	a	single	student’s	exam,	the	high	school	and	college	physics
teachers	who	are	responsible	for	scoring	the	AP	free-response	section	make	a
“rubric”	for	each	question.	A	rubric	is	a	grading	guide;	it	specifies	exactly	what
needs	to	be	included	for	an	answer	to	receive	full	credit,	and	it	explains	how
partial	credit	should	be	awarded.

For	example,	consider	part	of	a	free-response	question:

A	student	pulls	a	1.0-kg	block	across	a	table	to	the	right,	applying	a	force
of	8.0	N.	The	coefficient	of	kinetic	friction	between	the	block	and	the	table
is	0.20.	Assume	the	block	is	at	rest	when	it	begins	its	motion	.

(a)	Determine	the	force	of	friction	experienced	by	the	block	.
(b)	Calculate	the	speed	of	the	block	after	1.5	s	.

Let’s	look	just	at	part	(b).	What	do	you	think	the	AP	graders	are	looking	for	in	a
correct	answer?	Well,	we	know	that	the	AP	free-response	section	tests	your
understanding	of	physics.	So	the	graders	probably	want	to	see	that	you	know
how	to	evaluate	the	forces	acting	on	an	object	and	how	to	relate	those	forces	to
the	object’s	motion.



In	fact,	if	part	(b)	were	worth	4	points,	the	graders	might	award	1	point	for
each	of	these	elements	of	your	answer:

1.				Applying	Newton’s	second	law,	F	net	=	ma	,	to	find	the	block’s	acceleration.
2.				Recognizing	that	the	net	force	is	not	8.0	N,	but	rather	is	the	force	of	the

student	minus	the	force	of	friction	[which	was	found	in	(a)],	8.0	N	−	2.0	N	=
6.0	N.

3.				Using	a	correct	kinematics	equation	with	correct	substitutions	to	find	the
final	velocity	of	the	block;	i.e.,	vf	=	vo	+	at	,	where	vo	=	0	and	a	=	6.0	N/1.0
kg	=	6.0	m/s2	.

4.				Obtaining	a	correct	answer	with	correct	units,	9.0	m/s.

Now,	we’re	not	suggesting	that	you	try	to	guess	how	the	AP	graders	will
award	points	for	every	problem.	Rather,	we	want	you	to	see	that	the	AP	graders
care	much	more	about	your	understanding	of	physics	than	your	ability	to	punch
numbers	into	your	calculator.	Therefore,	you	should	care	much	more	about
demonstrating	your	understanding	of	physics	than	about	getting	the	right	final
answer.

Partial	Credit
Returning	to	part	(b)	from	the	example	problem,	it’s	obvious	that	you	can	get
lots	of	partial	credit	even	if	you	make	a	mistake	or	two.	For	example:

•			If	you	forgot	to	include	friction,	and	just	set	the	student’s	force	equal	to	ma
and	solved,	you	could	still	get	2	out	of	4	points.

•			If	you	solved	part	(a)	wrong	but	still	got	a	reasonable	answer,	say	4.5	N	for
the	force	of	friction,	and	plugged	that	in	correctly	here,	you	would	still	get
either	3	or	4	points	in	part	(b)!	Usually	the	rubrics	are	designed	not	to	penalize
you	twice	for	a	wrong	answer.	So	if	you	get	part	of	a	problem	wrong,	but	your
answer	is	consistent	with	your	previous	work,	you’ll	usually	get	full	or	close
to	full	credit.

•			That	said,	if	you	had	come	up	with	a	1000	N	force	of	friction,	which	is	clearly
unreasonable,	you	probably	will	not	get	credit	for	a	wrong	but	consistent
answer,	unless	you	indicate	the	ridiculousness	of	the	situation.	You’ll	still	get
probably	2	points,	though,	for	the	correct	application	of	principles!

•			If	you	got	the	right	answer	using	a	shortcut—say,	doing	the	calculation	of	the
net	force	in	your	head—you	would	not	earn	full	credit	but	you	would	at	least
get	the	correct	answer	point.	However,	if	you	did	the	calculation	wrong	in



your	head,	then	you	would	not	get	any	credit—AP	graders	can	read	what’s
written	on	the	test,	but	they’re	not	allowed	to	read	your	mind.	Moral	of	the
story:	communicate	with	the	readers	so	you	are	sure	to	get	all	the	partial	credit
you	deserve.

•			Notice	how	generous	the	partial	credit	is.	You	can	easily	get	2	or	3	points
without	getting	the	right	answer	and	50–75%	is	in	the	4–5	range	when	the	AP
test	is	scored!

You	should	also	be	aware	of	some	things	that	will	NOT	get	you	partial	credit:

•			You	will	not	get	partial	credit	if	you	write	multiple	answers	to	a	single
question.	If	AP	graders	see	that	you’ve	written	two	answers,	they	will	grade
the	one	that’s	wrong.	In	other	words,	you	will	lose	points	if	you	write	more
than	one	answer	to	a	question,	even	if	one	of	the	answers	you	write	is	correct.

•			You	will	not	get	partial	credit	by	including	unnecessary	information.	There’s
no	way	to	get	extra	credit	on	a	question,	and	if	you	write	something	that’s
wrong,	you	could	lose	points.	Answer	the	question	fully,	then	stop.

The	Tools	You	Can	Use
You	can	use	a	calculator.	Most	calculators	are	acceptable—the	acceptable
calculator	list	is	the	same	as	for	the	SAT	or	the	AP	calculus	exam.	The	obvious
forbidden	calculators	are	those	with	a	keyboard,	cell	phones	used	as	a	calculator,
or	those	calculators	that	make	noise	or	print	their	answers	onto	paper.	1	You	also
cannot	share	a	calculator	with	anyone	during	the	exam.

The	real	question,	though,	is	whether	a	calculator	will	really	help	you.	The
short	answer	is	“Yes”:	you	will	be	asked	questions	on	the	exam	that	require	you
to	do	messy	calculations	(for	example,	you	might	need	to	divide	a	number	by	π	,
or	multiply	something	by	the	universal	gravitation	constant).	The	longer	answer,
though,	is	“Yes,	but	it	won’t	help	very	much.”	To	see	what	we	mean,	look	back
at	the	hypothetical	grading	rubric	for	part	(b)	of	the	example	problem	we
discussed	earlier.	Two	of	the	four	possible	points	are	awarded	for	using	the	right
equations,	one	point	is	awarded	for	finding	the	magnitude	of	a	force	using	basic
arithmetic,	and	the	last	point	is	awarded	for	solving	a	relatively	simple	equation.
So	you	would	get	half-credit	if	you	did	no	math	at	all,	and	you	would	get	full
credit	just	by	doing	some	very	elementary	math.	You	probably	wouldn’t	need	to



touch	your	calculator!
So	definitely	bring	a	calculator	to	the	exam,	but	don’t	expect	that	you’ll	be

punching	away	at	it	constantly.
The	other	tool	you	can	use	on	the	free-response	section	is	the	equations

sheet.	You	will	be	given	a	copy	of	this	sheet	in	your	exam	booklet.	It’s	a	handy
reference	because	it	lists	all	the	equations	that	you’re	expected	to	know	for	the
exam.

However,	the	equations	sheet	can	also	be	dangerous.	Too	often,	students
interpret	the	equations	sheet	as	an	invitation	to	stop	thinking:	“Hey,	they	tell	me
everything	I	need	to	know,	so	I	can	just	plug-and-chug	through	the	rest	of	the
exam!”	Nothing	could	be	further	from	the	truth.

First	of	all,	you’ve	already	memorized	the	equations	on	the	sheet.	It	might	be
reassuring	to	look	up	an	equation	during	the	AP	exam,	just	to	make	sure	that
you’ve	remembered	it	correctly.	And	maybe	you’ve	forgotten	a	particular
equation,	but	seeing	it	on	the	sheet	will	jog	your	memory.	This	is	exactly	what
the	equations	sheet	is	for,	and	in	this	sense,	it’s	pretty	nice	to	have	around.	But
beware	of	the	following:

•			Don’t	look	up	an	equation	unless	you	know	exactly	what	you’re	looking	for.	It
might	sound	obvious,	but	if	you	don’t	know	what	you’re	looking	for,	you
won’t	find	it.

•			Don’t	go	fishing.	If	part	of	a	free-response	question	asks	you	to	find	an
object’s	momentum,	and	you’re	not	sure	how	to	do	that,	don’t	just	rush	to	the
equations	sheet	and	search	for	every	equation	with	a	“P	”	in	it.

Math	and	the	Physics	C	Exam
Physics	C	students	often	worry	about	the	math	they’re	expected	to	know	for	the
AP	exam,	because	some	of	the	material	covered	in	the	Physics	C	curriculum
involves	pretty	complicated	calculus.	Maxwell’s	equations,	for	example,	involve
concepts	that	are	well	beyond	the	scope	of	most	high	school	calculus	classes.

Whether	or	not	you	are	carrying	an	A	in	your	AP	Calculus	course	is
irrelevant.	Most	importantly,	you	must	have	a	strong	understanding	of	the
physical	meaning	behind	the	mathematics.	The	problems	that	might	seem	to
involve	calculus—those	that	use	an	integral	or	derivative	equation	from	the
equations	sheet—can	often	be	approached	with	algebraic	methods.	Remember,
an	integral	is	just	the	area	under	a	graph;	a	derivative	is	just	the	slope	of	a	graph.
If	you	have	to,	set	up	an	integral	and	don’t	solve	it.	Or	explain	in	words	what
your	answer	should	look	like.	Also,	note	that	many	of	the	equations	that	appear



on	the	equations	sheet	as	calculus	expressions	rarely	or	never	need	calculus.	For
instance,	Gauss’s	law	has	a	nasty	integral	in	it,	but	when	used	correctly,	Gauss’s
law	rarely	requires	any	calculus.	Whatever	you	do,	it	is	not	worth	the	time	and
frustration	to	focus	exclusively	on	the	tough	calculus—this	isn’t	a	math	exam,
and	the	point	distribution	in	the	rubrics	reflects	this	fact.

Other	Advice	About	the	Free-Response	Section
•			Always	show	your	work.	If	you	use	the	correct	equation	to	solve	a	problem
but	you	plug	in	the	wrong	numbers,	you	will	probably	get	partial	credit,	but	if
you	just	write	down	an	incorrect	answer,	you	will	definitely	get	no	partial
credit.

•			If	you	don’t	know	precisely	how	to	solve	a	problem,	simply	explain	your
thinking	process	to	the	grader.	If	a	problem	asks	you	to	find	the	centripetal
acceleration	of	a	satellite	orbiting	a	planet,	for	example,	and	you	don’t	know
what	equations	to	use,	you	might	write	something	like	this:	“The	centripetal
force	points	toward	the	center	of	the	satellite’s	orbit,	and	this	force	is	due	to
gravity.	If	I	knew	the	centripetal	force,	I	could	then	calculate	the	centripetal
acceleration	using	Newton’s	second	law.”	This	answer	might	earn	you	several
points,	even	though	you	didn’t	do	a	single	calculation.

•			However,	don’t	write	a	book.	Keep	your	answers	succinct.
•			Let’s	say	that	part	(b)	of	a	question	requires	you	to	use	a	value	calculated	in
part	(a).	You	didn’t	know	how	to	solve	part	(a),	but	you	know	how	to	solve
part	(b).	What	should	you	do?	We	can	suggest	two	options.	First,	make	up	a
reasonable	answer	for	part	(a),	and	then	use	that	answer	for	part	(b).	Or,	set
some	variable	equal	to	the	answer	from	part	(a)	(write	a	note	saying
something	like,	“Let	v	be	the	velocity	found	in	part	(a)”).	Then,	solve	part	(b)
in	terms	of	that	variable.	Both	of	these	methods	should	allow	you	to	get
partial	or	even	full	credit	on	part	(b).

•			If	you	make	a	mistake,	cross	it	out.	If	your	work	is	messy,	circle	your	answer
so	that	it’s	easy	to	find.	Basically,	make	sure	the	AP	graders	know	what	you
want	them	to	grade	and	what	you	want	them	to	ignore.

•			If	you’re	stuck	on	a	free-response	question,	try	another	one.	Question	#3
might	be	easier	for	you	than	question	#1.	Get	the	easy	points	first,	and	then
only	try	to	get	the	harder	points	if	you	have	time	left	over.

•			Always	remember	to	use	units	where	appropriate.
•			It	may	be	helpful	to	include	a	drawing	or	a	graph	in	your	answer	to	a	question,
but	make	sure	to	label	your	drawings	or	graphs	so	that	they’re	easy	to
understand.



•			No	free-response	question	should	take	you	more	than	about	15	minutes	to
solve.	They’re	not	designed	to	be	outrageously	difficult,	so	if	your	answer	to	a
free-response	problem	is	outrageously	complicated,	you	should	look	for	a	new
way	to	solve	the	problem,	or	just	skip	it	and	move	on.

Lab	Questions
It	is	all	well	and	good	to	be	able	to	solve	problems	and	calculate	quantities	using
the	principles	and	equations	you’ve	learned.	However,	the	true	test	of	any
physics	theory	is	whether	or	not	it	WORKS.

The	AP	development	committee	is	sending	a	message	to	students	that
laboratory	work	is	an	important	aspect	of	physics.	To	truly	understand	physics,
you	must	be	able	to	design	and	analyze	experiments.	Thus,	each	free-response
section	will	contain	at	least	one	question	that	involves	experiment	design	and
analysis	.

Here’s	an	example:

In	the	laboratory,	you	are	given	a	metal	block,	about	the	size	of	a	brick.	You
are	also	given	a	2.0-m-long	wooden	plank	with	a	pulley	attached	to	one	end.
Your	goal	is	to	determine	experimentally	the	coefficient	of	kinetic	friction,	μ	k
,	between	the	metal	block	and	the	wooden	plank.

(a)		From	the	list	below,	select	the	additional	equipment	you	will	need	to	do
your	experiment	by	checking	the	line	to	the	left	of	each	item.	Indicate	if
you	intend	to	use	more	than	one	of	an	item.

(b)		Draw	a	labeled	diagram	showing	how	the	plank,	the	metal	block,	and	the
additional	equipment	you	selected	will	be	used	to	measure	μ	k	.

(c)		Briefly	outline	the	procedure	you	will	use,	being	explicit	about	what
measurements	you	need	to	make	and	how	these	measurements	will	be	used
to	determine	μ	k	.



To	answer	a	lab	question,	just	follow	these	steps:

1.			Follow	the	directions.
Sounds	simple,	doesn’t	it?	When	the	test	says,	“Draw	a	diagram,”	it	means
they	want	you	to	draw	a	diagram.	And	when	it	says,	“Label	your	diagram,”	it
means	they	want	you	to	label	your	diagram.	You	will	likely	earn	points	just
for	these	simple	steps.

Exam	tip	from	an	AP	Physics	veteran:
On	the	1999	AP	test,	I	forgot	to	label	point	B	on	a	diagram,	even	though	I
obviously	knew	where	point	B	was.	This	little	mistake	cost	me	several	points!

—Zack,	college	senior	and	engineer

2.			Use	as	few	words	as	possible.
Answer	the	question,	then	stop.	You	can	lose	credit	for	an	incorrect
statement,	even	if	the	other	15	statements	in	your	answer	are	correct.	The
best	idea	is	to	keep	it	simple.

3.			There	is	no	single	correct	answer.
Most	of	the	lab	questions	are	open-ended.	There	might	be	four	or	more
different	correct	approaches.	So	don’t	try	to	“give	them	the	answer	they’re
looking	for.”	Just	do	something	that	seems	to	make	sense—you	might	well
be	right!

4.			Don’t	assume	you	have	to	use	all	the	stuff	they	give	you.
It	might	sound	fun	to	use	a	force	probe	while	determining	the	time	constant
of	an	RC	circuit,	but	really!	A	force	probe!?!

5.			Don’t	over-think	the	question.
They’re	normally	not	too	complicated.	Remember,	you’re	supposed	to	take
only	15	minutes	to	write	your	answer.	You’re	not	exactly	designing	a
subatomic	particle	accelerator.

6.			Don’t	state	the	obvious.
You	may	assume	that	basic	lab	protocols	will	be	followed.	So	there’s	no	need
to	tell	the	reader	that	you	recorded	your	data	carefully,	nor	do	you	need	to
remind	the	reader	to	wear	safety	goggles.



Now	Put	It	All	Together
Here	are	two	possible	answers	to	the	sample	question.	Look	how	explicit	we
were	about	what	quantities	are	measured,	how	each	quantity	is	measured,	and
how	μ	k	is	determined.	We	aren’t	artistes	,	so	our	diagram	doesn’t	look	so	good.
But	for	the	AP	exam,	we	believe	in	substance	over	style.	All	the	necessary
components	are	there,	and	that’s	all	that	matters.

Answer	#1
In	the	laboratory,	you	are	given	a	metal	block,	about	the	size	of	a	brick.	You	are
also	given	a	2.0-m-long	wooden	plank	with	a	pulley	attached	to	one	end.	Your
goal	is	to	determine	experimentally	the	coefficient	of	kinetic	friction,	μ	k	,
between	the	metal	block	and	the	wooden	plank.

(a)		From	the	list	below,	select	the	additional	equipment	you	will	need	to	do
your	experiment	by	checking	the	line	to	the	left	of	each	item.	Indicate	if
you	intend	to	use	more	than	one	of	an	item.

(b)		Draw	a	labeled	diagram	showing	how	the	plank,	the	metal	block,	and	the
additional	equipment	you	selected	will	be	used	to	measure	μ	k	.

(c)		Briefly	outline	the	procedure	you	will	use,	being	explicit	about	what
measurements	you	need	to	make	and	how	these	measurements	will	be
used	to	determine	μ	k	.

Use	the	balance	to	determine	the	mass,	m	,	of	the	metal	block.	The	weight	of	the



block	is	mg	.	Attach	the	spring	scale	to	the	bulldozer;	attach	the	other	end	of	the
spring	scale	to	the	metal	block	with	string.	Allow	the	bulldozer	to	pull	the	block
at	constant	speed.

The	block	is	in	equilibrium.	So,	the	reading	of	the	spring	scale	while	the
block	is	moving	is	the	friction	force	on	the	block;	the	normal	force	on	the	block
is	equal	to	its	weight.	The	coefficient	of	kinetic	friction	is	equal	to	the	spring
scale	reading	divided	by	the	block’s	weight.

Answer	#2
In	the	laboratory,	you	are	given	a	metal	block,	about	the	size	of	a	brick.	You	are
also	given	a	2.0-m-long	wooden	plank	with	a	pulley	attached	to	one	end.	Your
goal	is	to	determine	experimentally	the	coefficient	of	kinetic	friction,	μ	k	,
between	the	metal	block	and	the	wooden	plank.

(a)		From	the	list	below,	select	the	additional	equipment	you	will	need	to	do
your	experiment	by	checking	the	line	to	the	left	of	each	item.	Indicate	if
you	intend	to	use	more	than	one	of	an	item.

(b)		Draw	a	labeled	diagram	showing	how	the	plank,	the	metal	block,	and	the



additional	equipment	you	selected	will	be	used	to	measure	μ	k	.
(c)		Briefly	outline	the	procedure	you	will	use,	being	explicit	about	what

measurements	you	need	to	make	and	how	these	measurements	will	be
used	to	determine	μ	k	.

Determine	the	mass,	m	,	of	the	block	with	the	balance.	The	weight	of	the	block	is
mg	.	Attach	a	string	to	the	block	and	pass	the	string	over	the	pulley.	Hang	masses
from	the	other	end	of	the	string,	changing	the	amount	of	mass	until	the	block	can
move	across	the	plank	at	constant	speed.	Use	the	motion	detector	to	verify	that
the	speed	of	the	block	is	as	close	to	constant	as	possible.

The	block	is	in	equilibrium.	So,	the	weight	of	the	hanging	masses	is	equal	to
the	friction	force	on	the	block;	the	normal	force	on	the	block	is	equal	to	its
weight.	The	coefficient	of	kinetic	friction	is	thus	equal	to	the	weight	of	the
hanging	masses	divided	by	the	block’s	weight.



1	Does	anyone	actually	use	printing	calculators	anymore?



CHAPTER 	 8

Extra	Drill	on	Difficult	but	Frequently	Tested
Topics

IN	THIS	CHAPTER

Summary:	Drills	in	five	types	of	problems	that	you	should	spend	extra	time	reviewing,	with	step-by-step
solutions.

Key	Ideas
		Tension	problems
		Electric	and	magnetic	fields	problems
		Inclined	plane	problems
		Motion	graph	problems
		Simple	circuits	problems

Practice	problems	and	tests	cannot	possibly	cover	every	situation	that	you	may
be	asked	to	understand	in	physics.	However,	some	categories	of	topics	come	up
again	and	again,	so	much	so	that	they	might	be	worth	some	extra	review.	And
that’s	exactly	what	this	chapter	is	for—to	give	you	a	focused,	intensive	review	of
a	few	of	the	most	essential	physics	topics.

We	call	them	“drills”	for	a	reason.	They	are	designed	to	be	skill-building
exercises,	and	as	such,	they	stress	repetition	and	technique.	Working	through
these	exercises	might	remind	you	of	playing	scales	if	you’re	a	musician	or	of



running	laps	around	the	field	if	you’re	an	athlete.	Not	much	fun,	maybe	a	little
tedious,	but	very	helpful	in	the	long	run.

The	questions	in	each	drill	are	all	solved	essentially	the	same	way.	Don’t	just
do	one	problem	after	the	other	…	rather,	do	a	couple,	check	to	see	that	your
answers	are	right,	1	and	then,	half	an	hour	or	a	few	days	later,	do	a	few	more,	just
to	remind	yourself	of	the	techniques	involved.

Tension
How	to	Do	It
Use	the	following	steps	to	solve	these	kinds	of	problems:	(1)	Draw	a	free-body
diagram	for	each	block;	(2)	resolve	vectors	into	their	components;	(3)	write
Newton’s	second	law	for	each	block,	being	careful	to	stick	to	your	choice	of
positive	direction;	and	(4)	solve	the	simultaneous	equations	for	whatever	the
problem	asks	for.

The	Drill
In	the	diagrams	below,	assume	all	pulleys	and	ropes	are	massless,	and	use	the
following	variable	definitions.

Find	the	tension	in	each	rope	and	the	acceleration	of	the	set	of	masses.
(For	a	greater	challenge,	solve	in	terms	of	F,	M	,	and	μ	instead	of	plugging	in
values.)

1	.				Frictionless

2	.				Frictionless



3	.				Frictionless

4	.				Coefficient	of	Friction	μ

5	.

6	.



7	.				Frictionless

8	.				Frictionless

9	.				Frictionless

10	.				Coefficient	of	Friction	μ



11	.				Coefficient	of	Friction	μ

12	.				Frictionless

13	.				Frictionless

14	.				Coefficient	of	Friction	μ



	The	Answers
(Step-by-Step	Solutions	to	#2	and	#5	Are	on	the	Next
Page.)
1	.	a	=	10	m/s2

2	.	a	=	3.3	m/s2

T	=	3.3	N

3	.	a	=	1.7	m/s2

T	1	=	1.7	N

T	2	=	5.1	N

4	.	a	=	1.3	m/s2

T	=	3.3	N

5	.	a	=	3.3	m/s2

T	=	13	N

6	.	a	=	7.1	m/s2

T	1	=	17	N

T	2	=	11	N

7	.	a	=	3.3	m/s2

T	=	6.6	N

8	.	a	=	6.7	m/s2



T	1	=	13	N

T	2	=	10	N

9	.	a	=	1.7	m/s2

T	1	=	5.1	N

T	2	=	8.3	N

10	.	a	=	6.0	m/s2

T	=	8.0	N

11	.	a	=	8.0	m/s2

T	1	=	10	N

T	2	=	4.0	N

12	.	a	=	5.0	m/s2

T	=	15	N

13	.	a	=	3.3	m/s2

T	1	=	13	N

T	2	=	20	N

14	.	a	=	0.22	m/s2

T	1	=	20	N

T	2	=	29	N

Step-by-Step	Solution	to	#2:
Step	1	:	Free-body	diagrams:

No	components	are	necessary,	so	on	to	Step	3	:	write	Newton’s	second	law	for



each	block,	calling	the	rightward	direction	positive:

Step	4	:	Solve	algebraically.	It’s	easiest	to	add	these	equations	together,	because
the	tensions	cancel:

F	=	(3m	)a	,	so	a	=	F	/3m	=	(10	N)/3(1	kg)	=	3.3	m/s2	.

To	get	the	tension,	just	plug	back	into	T	−	0	=	ma	to	find	T	=	F	/3	=	3.3	N.

Step-by-Step	Solution	to	#5:
Step	1	:	Free-body	diagrams:

No	components	are	necessary,	so	on	to	Step	3	:	write	Newton’s	second	law	for
each	block,	calling	clockwise	rotation	of	the	pulley	positive:

Step	4	:	Solve	algebraically.	It’s	easiest	to	add	these	equations	together,	because
the	tensions	cancel:

mg	=	(3m	)a	,	so	a	=	g	/3	=	3.3	m/s2	.

To	get	the	tension,	just	plug	back	into	T	−	mg	=	ma	:	T	=	m	(a	+	g	)	=	(4/3)mg	=



13	N.

Electric	and	Magnetic	Fields

How	to	Do	It
The	force	of	an	electric	field	is	F	=	qE	,	and	the	direction	of	the	force	is	in	the
direction	of	the	field	for	a	positive	charge.	The	force	of	a	magnetic	field	is	F	=
qvB	sinθ	,	and	the	direction	of	the	force	is	given	by	the	right-hand	rule.

The	Drill

The	magnetic	field	above	has	magnitude	3.0	T.	For	each	of	the	following
particles	placed	in	the	field,	find	(a)	the	force	exerted	by	the	magnetic	field	on
the	particle,	and	(b)	the	acceleration	of	the	particle.	Be	sure	to	give	magnitude
and	direction	in	each	case.

1	.			an	e-	at	rest
2	.			an	e-	moving	↑	at	2	m/s
3	.			an	e-	moving	←	at	2	m/s
4	.			a	proton	moving	 	at	2	m/s
5	.			an	e-	moving	up	and	to	the	right,	at	an	angle	of	30°	to	the	horizontal,	at	2

m/s
6	.			an	e-	moving	up	and	to	the	left,	at	an	angle	of	30°	to	the	horizontal,	at	2

m/s
7	.			a	positron	moving	up	and	to	the	right,	at	an	angle	of	30°	to	the	horizontal,

at	2	m/s
8	.			an	e-	moving	→	at	2	m/s
9	.			a	proton	moving	 	at	2	m/s



The	electric	field	above	has	magnitude	3.0	N/C.	For	each	of	the	following
particles	placed	in	the	field,	find	(a)	the	force	exerted	by	the	electric	field	on	the
particle,	and	(b)	the	acceleration	of	the	particle.	Be	sure	to	give	magnitude	and
direction	in	each	case.

10	.			an	e-	at	rest
11	.			a	proton	at	rest
12	.			a	positron	at	rest
13	.			an	e-	moving	↑	at	2	m/s
14	.			an	e-	moving	→	at	2	m/s
15	.			a	proton	moving	 	at	2	m/s
16	.			an	e-	moving	←	at	2	m/s
17	.			a	positron	moving	up	and	to	the	right,	at	an	angle	of	30°	to	the	horizontal,

at	2	m/s

	The	Answers
(Step-by-Step	Solutions	to	#2	and	#10	Are	on	the	Next
Pages.)
1	.	No	force	or	acceleration,	v	=	0.

2	.	F	=	9.6	×	10−19	N,	out	of	the	page.
a	=	1.1	×	1012	m/s2	,	out	of	the	page.

3	.	No	force	or	acceleration,	sin	θ	=	0.

4	.	F	=	9.6	×	10−19	N,	toward	the	top	of	the	page.
a	=	5.6	×	108	m/s2	,	toward	the	top	of	the	page.

5	.	F	=	4.8	×	10−19	N,	out	of	the	page.



a	=	5.3	×	1011	m/s2	,	out	of	the	page.

6	.	F	=	4.8	×	10−19	N,	out	of	the	page.
a	=	5.3	×	1011	m/s2	,	out	of	the	page.

7	.	F	=	4.8	×	10−19	N,	into	the	page.
a	=	5.3	×	1011	m/s2	,	into	the	page.

8	.	No	force	or	acceleration,	sin	θ	=	0.

9	.	F	=	9.6	×	10−19	N,	toward	the	bottom	of	the	page.
a	=	5.6	×	108	m/s2	,	toward	the	bottom	of	the	page.

10	.	F	=	4.8	×	10−19	N,	left.
a	=	5.3	×	1011	m/s2	,	left.

11	.	F	=	4.8	×	10−19	N,	right.
a	=	2.8	×	108	m/s2	,	right.

12	.	F	=	4.8	×	10−19	N,	right.
a	=	5.3	×	1011	m/s2	,	right.

13	.	F	=	4.8	×	10−19	N,	left.
a	=	5.3	×	1011	m/s2	,	left.
Velocity	does	not	affect	electric	force.

14	.	F	=	4.8	×	10−19	N,	left.
a	=	5.3	×	1011	m/s2	,	left.

15	.	F	=	4.8	×	10−19	N,	right.
a	=	2.8	×	108	m/s2	,	right.

16	.	F	=	4.8	×	10−19	N,	left.
a	=	5.3	×	1011	m/s2	,	left.

17	.	F	=	4.8	×	10−19	N,	right.



a	=	5.3	×	1011	m/s2	,	right.

Step-by-Step	Solution	to	#2:
(a)	The	magnetic	force	on	a	charge	is	given	by	F	=	qvB	sin	θ	.	Since	the	velocity
is	perpendicular	to	the	magnetic	field,	θ	=	90°,	and	sin	θ	=	1.	The	charge	q	is	the
amount	of	charge	on	an	electron,	1.6	×	10−19	C.	v	is	the	electron’s	speed,	2	m/s.
B	is	the	magnetic	field,	3	T.

F	=	(1.6	×	10−19	C)(2	m/s)(3	T)(1)	=	9.6	×	10−19	N

The	direction	is	given	by	the	right-hand	rule.	Point	your	fingers	in	the	direction
of	the	electron’s	velocity,	toward	the	top	of	the	page;	curl	your	fingers	in	the
direction	of	the	magnetic	field,	to	the	right;	your	thumb	points	into	the	page.
Since	the	electron	has	a	negative	charge,	the	force	points	opposite	your	thumb,
or	out	of	the	page.

(b)	Even	though	we’re	dealing	with	a	magnetic	force,	we	can	still	use	Newton’s
second	law.	Since	the	magnetic	force	is	the	only	force	acting,	just	set	this	force
equal	to	ma	and	solve.	The	direction	of	the	acceleration	must	be	in	the	same
direction	as	the	net	force.

9.6	×	10−19	N	=	(9.1	×	10−31	kg)a
a	=	1.1	×	1012	m/s2	,	out	of	the	page

Step-by-Step	Solution	to	#10:

(a)	The	electric	force	on	a	charge	is	given	by	F	=	qE	.	The	charge	q	is	the
amount	of	charge	on	an	electron,	1.6	×	10−19	C.	E	is	the	electric	field,	3	N/C.

F	=	(1.6	×	10−19	C)(3	N/C)	=	4.8	×	10−19	N

Because	the	electron	has	a	negative	charge,	the	force	is	opposite	the	electric
field,	or	right.

(b)	Even	though	we’re	dealing	with	an	electric	force,	we	can	still	use	Newton’s
second	law.	Since	the	electric	force	is	the	only	force	acting,	just	set	this	force
equal	to	ma	and	solve.	The	direction	of	the	acceleration	must	be	in	the	same
direction	as	the	net	force.



4.8	×	10−19	N	=	(9.1	×	10−31	kg)a
a	=	2.8	×	108	m/s2	,	left

Inclined	Planes

How	to	Do	It
Use	the	following	steps	to	solve	these	kinds	of	problems:	1)	Draw	a	free-body
diagram	for	the	object	(the	normal	force	is	perpendicular	to	the	plane;	the
friction	force	acts	along	the	plane,	opposite	the	velocity);	2)	break	vectors	into
components,	where	the	parallel	component	of	weight	is	mg	(sin	θ	);	3)	write
Newton’s	second	law	for	parallel	and	perpendicular	components;	and	4)	solve
the	equations	for	whatever	the	problem	asks	for.

Don’t	forget,	the	normal	force	is	NOT	equal	to	mg	when	a	block	is	on	an
incline!

The	Drill
Directions:	For	each	of	the	following	situations,	determine:

(a)	the	acceleration	of	the	block	down	the	plane
(b)	the	time	for	the	block	to	slide	to	the	bottom	of	the	plane

In	each	case,	assume	a	frictionless	plane	unless	otherwise	stated;	assume	the
block	is	released	from	rest	unless	otherwise	stated.

1	.	

2	.	



3	.	

4	.	

5	.	

6	.	



7	.	

8	.	

Careful—this	one’s	tricky.

	The	Answers
(A	Step-by-Step	Solution	to	#1	Is	on	the	Next	Page.)
1	.				a	=	6.3	m/s2	,	down	the	plane.

t	=	2.5	s

2	.				a	=	4.9	m/s2	,	down	the	plane.
t	=	2.9	s



3	.				a	=	5.2	m/s2	,	down	the	plane.
t	=	2.8	s

4	.				a	=	4.4	m/s2	,	down	the	plane.
t	=	3.0	s

5	.				Here	the	angle	of	the	plane	is	27°	by	trigonometry,	and	the	distance	along
the	plane	is	22	m.a	=	4.4	m/s2	,	down	the	plane.
t	=	3.2	s

6	.				a	=	6.3	m/s2	,	down	the	plane.
t	=	1.8	s

7	.				a	=	6.3	m/s2	,	down	the	plane.
t	=	3.5	s

8	.				This	one	is	complicated.	Since	the	direction	of	the	friction	force	changes
depending	on	whether	the	block	is	sliding	up	or	down	the	plane,	the
block’s	acceleration	is	NOT	constant	throughout	the	whole	problem.	So,
unlike	problem	#7,	this	one	can’t	be	solved	in	a	single	step.	Instead,	in
order	to	use	kinematics	equations,	you	must	break	this	problem	up	into
two	parts:	up	the	plane	and	down	the	plane.	During	each	of	these
individual	parts,	the	acceleration	is	constant,	so	the	kinematics	equations
are	valid.

•			up	the	plane:
a	=	6.8	m/s2	,	down	the	plane.
t	=	0.4	s	before	the	block	turns	around	to	come	down	the	plane.

•			down	the	plane:
a	=	1.5	m/s2	,	down	the	plane.
t	=	5.2	s	to	reach	bottom.

So,	a	total	of	t	=	5.6	s	for	the	block	to	go	up	and	back	down.

Step-by-Step	Solution	to	#1:
Step	1:	Free-body	diagram:



Step	2:	Break	vectors	into	components.	Because	we	have	an	incline,	we	use
inclined	axes,	one	parallel	and	one	perpendicular	to	the	incline:

Step	3:	Write	Newton’s	second	law	for	each	axis.	The	acceleration	is	entirely
directed	parallel	to	the	plane,	so	perpendicular	acceleration	can	be	written	as
zero:

mg	sin	θ	−	0	=	ma	.
F	N	−	mg	cos	θ	=	0.

Step	4:	Solve	algebraically	for	a	.	This	can	be	done	without	reference	to	the
second	equation.	(In	problems	with	friction,	use	F	f	=	μF	N	to	relate	the	two
equations.)



a	=	g	sin	θ	=	6.3	m/s2

To	find	the	time,	plug	into	a	kinematics	chart:

Solve	for	t	using	the	second	star	equation	for	kinematics	(**):	Δx	=	vo	t	+	½at	2	,
where	vo	is	zero;

Motion	Graphs

How	to	Do	It
For	a	position–time	graph,	the	slope	is	the	velocity.	For	a	velocity–time	graph,
the	slope	is	the	acceleration,	and	the	area	under	the	graph	is	the	displacement.

The	Drill
Use	the	graph	to	determine	something	about	the	object’s	speed.	Then	play
“Physics	Taboo	”:	suggest	what	object	might	reasonably	perform	this	motion	and
explain	in	words	how	the	object	moves.	Use	everyday	language.	In	your
explanation,	you	may	not	use	any	words	from	the	list	below:

velocity
acceleration
positive
negative
increase
decrease
it
object



constant



	The	Answers
Note	that	our	descriptions	of	the	moving	objects	reflect	our	own	imaginations.
You	might	have	come	up	with	some	very	different	descriptions,	and	that’s	fine
…	provided	that	your	answers	are	conceptually	the	same	as	ours.

1	.				The	average	speed	over	the	first	5	s	is	10	m/s,	or	about	22	mph.	So:

Someone	rolls	a	bowling	ball	along	a	smooth	road.	When	the	graph	starts,
the	bowling	ball	is	moving	along	pretty	fast,	but	the	ball	encounters	a	long
hill.	So,	the	ball	slows	down,	coming	to	rest	after	5	s.	Then,	the	ball	comes
back	down	the	hill,	speeding	up	the	whole	way.



2	.				This	motion	only	lasts	1	s,	and	the	maximum	speed	involved	is	about	5
mph.	So:

A	biker	has	been	cruising	up	a	hill.	When	the	graph	starts,	the	biker	is	barely
moving	at	jogging	speed.	Within	half	a	second,	and	after	traveling	only	a
meter	up	the	hill,	the	bike	turns	around,	speeding	up	as	it	goes	back	down	the
hill.

3	.				The	maximum	speed	of	this	thing	is	30	cm/s,	or	about	a	foot	per	second.
So:

A	toy	racecar	is	moving	slowly	along	its	track.	The	track	goes	up	a	short	hill
that’s	about	a	foot	long.	After	2	s,	the	car	has	just	barely	reached	the	top	of
the	hill,	and	is	perched	there	momentarily;	then,	the	car	crests	the	hill	and
speeds	up	as	it	goes	down	the	other	side.

4	.				The	steady	speed	over	200	s	(a	bit	over	3	minutes)	is	0.25	m/s,	or	25	cm/s,
or	about	a	foot	per	second.

A	cockroach	crawls	steadily	along	the	school’s	running	track,	searching	for
food.	The	cockroach	starts	near	the	50	yard	line	of	the	football	field;	around
three	minutes	later,	the	cockroach	reaches	the	goal	line	and,	having	found
nothing	of	interest,	turns	around	and	crawls	at	the	same	speed	back	toward
his	starting	point.

5	.				The	maximum	speed	here	is	50	m/s,	or	over	a	hundred	mph,	changing
speed	dramatically	in	only	5	or	10	s.	So:

A	small	airplane	is	coming	in	for	a	landing.	Upon	touching	the	ground,	the
pilot	puts	the	engines	in	reverse,	slowing	the	plane.	But	wait!	The	engine
throttle	is	stuck!	So,	although	the	plane	comes	to	rest	in	5	s,	the	engines	are
still	on.	The	plane	starts	speeding	up	backwards!	Oops	…

6	.				This	thing	covers	5	meters	in	3	seconds,	speeding	up	the	whole	time.

An	8-year-old	gets	on	his	dad’s	bike.	The	boy	is	not	really	strong	enough	to
work	the	pedals	easily,	so	he	starts	off	with	difficulty.	But,	after	a	few
seconds	he’s	managed	to	speed	the	bike	up	to	a	reasonable	clip.

7	.				Though	this	thing	moves	quickly—while	moving,	the	speed	is	1	m/s—the
total	distance	covered	is	1	mm	forward,	and	1	mm	back;	the	whole	process
takes	5	ms,	which	is	less	than	the	minimum	time	interval	indicated	by	a
typical	stopwatch.	So	we’ll	have	to	be	a	bit	creative:



In	the	Discworld	novels	by	Terry	Pratchett,	wizards	have	developed	a
computer	in	which	living	ants	in	tubes,	rather	than	electrons	in	wires	and
transistors,	carry	information.	(Electricity	has	not	been	harnessed	on	the
Discworld.)	In	performing	a	calculation,	one	of	these	ants	moves	forward	a
distance	of	1	mm;	stays	in	place	for	3	ms;	and	returns	to	the	original	position.
If	this	ant’s	motion	represents	two	typical	“operations”	performed	by	the
computer,	then	this	computer	has	an	approximate	processing	speed	of	400	Hz
times	the	total	number	of	ants	inside.

8	.				Though	this	graph	looks	like	#7,	this	one	is	a	velocity–time	graph,	and	so
indicates	completely	different	motion.

A	small	child	pretends	he	is	a	bulldozer.	Making	a	“brm-brm-brm”	noise
with	his	lips,	he	speeds	up	from	rest	to	a	slow	walk.	He	walks	for	three	more
seconds,	then	slows	back	down	to	rest.	He	moved	forward	the	entire	time,
traveling	a	total	distance	(found	from	the	area	under	the	graph)	of	4	m.

9	.				This	stuff	moves	300	million	meters	in	1	s	at	a	constant	speed.	There’s	only
one	possibility	here:	electromagnetic	waves	in	a	vacuum.

Light	(or	electromagnetic	radiation	of	any	frequency)	is	emitted	from	the
surface	of	the	moon.	In	1	s,	the	light	has	covered	about	half	the	distance	to
Earth.

10	.	Be	careful	about	axis	labels:	this	is	an	acceleration	–time	graph.	Something
is	accelerating	at	1000	cm/s2	for	a	few	seconds.	1000	cm/s2	=	10	m/s2	,	about
Earth’s	gravitational	acceleration.	Using	kinematics,	we	calculate	that	if	we
drop	something	from	rest	near	Earth,	after	4	s	the	thing	has	dropped	80	m.

One	way	to	simulate	the	effects	of	zero	gravity	is	to	drop	an	experiment	from
the	top	of	a	high	tower.	Then,	because	everything	that	was	dropped	is
speeding	up	at	the	same	rate,	the	effect	is	just	as	if	the	experiment	were	done
in	the	Space	Shuttle—at	least	until	everything	hits	the	ground.	In	this	case,
an	experiment	is	dropped	from	a	250-ft	tower,	hitting	the	ground	with	a
speed	close	to	90	mph.

11	.	1	cm/s	is	ridiculously	slow.	Let’s	use	the	world	of	slimy	animals:

A	snail	wakes	up	from	his	nap	and	decides	to	find	some	food.	He	speeds
himself	up	from	rest	to	his	top	speed	in	10	s.	During	this	time,	he’s	covered	5
cm,	or	about	the	length	of	your	pinkie	finger.	He	continues	to	slide	along	at	a
steady	1	cm/s,	which	means	that	a	minute	later	he’s	gone	no	farther	than	a
couple	of	feet.	Let’s	hope	that	food	is	close.



12	.	This	one	looks	a	bit	like	those	up-and-down-a-hill	graphs,	but	with	an
important	difference—this	time	the	thing	stops	not	just	for	an	instant,	but	for
five	whole	seconds,	before	continuing	back	toward	the	starting	point.

A	bicyclist	coasts	to	the	top	of	a	shallow	hill,	slowing	down	from	cruising
speed	(∼15	mph)	to	rest	in	15	s.	At	the	top,	she	pauses	briefly	to	turn	her
bike	around;	then,	she	releases	the	brake	and	speeds	up	as	she	goes	back
down	the	hill.

Simple	Circuits

How	to	Do	It
Think	“series”	and	“parallel.”	The	current	through	series	resistors	is	the	same,
and	the	voltage	across	series	resistors	adds	to	the	total	voltage.	The	current
through	parallel	resistors	adds	to	the	total	current,	and	the	voltage	across	parallel
resistors	is	the	same.

The	Drill
For	each	circuit	drawn	below,	find	the	current	through	and	voltage	across	each
resistor.

Note:	Assume	each	resistance	and	voltage	value	is	precise	to	two	significant
figures.

1	.	

2	.	

3	.	



4	.	

5	.	

6	.	

7	.	



	The	Answers
(A	Step-by-Step	Solution	to	#2	Is	on	the	Next	Page.)
1	.	

2	.	

(Remember,	a	kΩ	is	1000	Ω,	and	a	mA	is	10–3	A.)

3	.	



4	.	

5	.	

6	.	



7	.	

Step-by-Step	Solution	to	#2:
Start	by	simplifying	the	combinations	of	resistors.	The	8	kΩ	and	10	kΩ	resistors
are	in	parallel.	Their	equivalent	resistance	is	given	by

which	gives	R	eq	=	4.4	kΩ.

Next,	simplify	these	series	resistors	to	their	equivalent	resistance	of	6.4	kΩ.

6.4	kΩ	(i.e.,	6400	Ω)	is	the	total	resistance	of	the	entire	circuit.	Because	we
know	the	total	voltage	of	the	entire	circuit	to	be	10	V,	we	can	use	Ohm’s	law	to
get	the	total	current



(more	commonly	written	as	1.6	mA).
Now	look	at	the	previous	diagram.	The	same	current	of	1.6	mA	must	go	out

of	the	battery,	into	the	2	kΩ	resistor,	and	into	the	4.4	kΩ	resistor.	The	voltage
across	each	resistor	can	thus	be	determined	by	V	=	(1.6	mA)R	for	each	resistor,
giving	3.2	V	across	the	2	kΩ	resistor	and	6.8	V	across	the	4.4	kΩ	resistor.

The	2	kΩ	resistor	is	on	the	chart.	However,	the	4.4	kΩ	resistor	is	the
equivalent	of	two	parallel	resistors.	Because	voltage	is	the	same	for	resistors	in
parallel,	there	are	6.8	V	across	each	of	the	two	parallel	resistors	in	the	original
diagram.	Fill	that	in	the	chart,	and	use	Ohm’s	law	to	find	the	current	through
each:



1	For	numerical	answers,	it’s	okay	if	you’re	off	by	a	significant	figure	or	so.
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CHAPTER 	 9

A	Bit	About	Vectors

IN	THIS	CHAPTER

Summary:	Understand	the	difference	between	scalars	and	vectors,	how	to	draw	vectors,	how	to	break
down	vectors	into	components,	and	how	to	add	vectors.

Key	Ideas
		Scalars	are	quantities	that	have	a	magnitude	but	no	direction—for	example,
temperature;	in	contrast,	vectors	have	both	magnitude	and	direction—for
example,	velocity.
		Vectors	are	drawn	as	arrows;	the	length	of	the	arrow	corresponds	to	the
magnitude	of	the	vector,	and	the	direction	of	the	arrow	represents	the	direction
of	the	vector.
		Any	vector	can	be	broken	down	into	its	x	-	and	y	-components;	breaking	a
vector	into	its	components	will	make	many	problems	simpler.

Relevant	Equations

Note:	this	assumes	that	θ	is	measured	from	the	horizontal.	These	equations	are
not	on	the	equation	sheet,	but	should	be	memorized.



Scalars	and	vectors	are	easy.	So	we’ll	make	this	quick.

Scalars
Scalars	are	numbers	that	have	a	magnitude	but	no	direction.

Magnitude:	How	big	something	is

For	example,	temperature	is	a	scalar.	On	a	cold	winter	day,	you	might	say	that	it
is	“4	degrees”	outside.	The	units	you	used	were	“degrees.”	But	the	temperature
was	not	oriented	in	a	particular	way;	it	did	not	have	a	direction.

Another	scalar	quantity	is	speed.	While	traveling	on	a	highway,	your	car’s
speedometer	may	read	“70	miles	per	hour.”	It	does	not	matter	whether	you	are
traveling	north	or	south,	if	you	are	going	forward	or	in	reverse:	your	speed	is	70
miles	per	hour.

Vector	Basics
Vectors,	by	comparison,	have	both	magnitude	and	direction.

Direction:	The	orientation	of	a	vector

An	example	of	a	vector	is	velocity.	Velocity,	unlike	speed,	always	has	a
direction.	So,	let’s	say	you	are	traveling	on	the	highway	again	at	a	speed	of	70
miles	per	hour.	First,	define	what	direction	is	positive—we’ll	call	north	the
positive	direction.	So,	if	you	are	going	north,	your	velocity	is	+70	miles	per	hour.
The	magnitude	of	your	velocity	is	“70	miles	per	hour,”	and	the	direction	is
“north.”

If	you	turn	around	and	travel	south,	your	velocity	is	−70	miles	per	hour.	The
magnitude	(the	speed)	is	still	the	same,	but	the	sign	is	reversed	because	you	are
traveling	in	the	negative	direction.	The	direction	of	your	velocity	is	“south.”

IMPORTANT:	If	the	answer	to	a	free-response	question	is	a	vector	quantity,



be	sure	to	state	both	the	magnitude	and	direction.	However,	don’t	use	a	negative
sign	if	you	can	help	it!	Rather	than	“−70	miles	per	hour,”	state	the	true	meaning
of	the	negative	sign:	“70	miles	per	hour,	south.”

Graphic	Representation	of	Vectors
Vectors	are	drawn	as	arrows.	The	length	of	the	arrow	corresponds	to	the
magnitude	of	the	vector—the	longer	the	arrow,	the	greater	the	magnitude	of	the
vector.	The	direction	in	which	the	arrow	points	represents	the	direction	of	the
vector.	Figure	9.1	shows	a	few	examples:

Figure	9.1			Examples	of	vectors.

Vector	A	has	a	magnitude	of	3	meters.	Its	direction	is	“60	degrees	above	the
positive	x	-axis.”	Vector	B	also	has	a	magnitude	of	3	meters.	Its	direction	is	“â
degrees	above	the	negative	x	-axis.”	Vector	C	has	a	magnitude	of	1.5	meters.	Its
direction	is	“in	the	negative	y	-direction”	or	“90	degrees	below	the	x	-axis.”

Vector	Components

Any	vector	can	be	broken	into	its	x	-	and	y	-components.	Here’s	what	we	mean:



Place	your	finger	at	the	tail	of	the	vector	in	Figure	9.2	(that’s	the	end	of	the
vector	that	does	not	have	a	 	on	it).	Let’s	say	that	you	want	to	get	your	finger	to
the	head	of	the	vector	without	moving	diagonally.	You	would	have	to	move	your
finger	three	units	to	the	right	and	four	units	up.	Therefore,	the	magnitude	of	left–
right	component	(x	-component)	of	the	vector	is	“3	units”	and	the	magnitude	of
up–down	(y	-component)	of	the	vector	is	“4	units.”

Figure	9.2			Breaking	vectors	into	x	-	and	y	-components.

If	your	languages	of	choice	are	Greek	and	math,	then	you	may	prefer	this
explanation:

Given	a	vector	V	with	magnitude	v	directed	at	an	angle	è	above	the	horizontal,

You	may	want	to	check	to	see	that	these	formulas	work	by	plugging	in	the	values
from	our	last	example.



Exam	tip	from	an	AP	Physics	veteran:
Even	though	the	vector	formulas	in	the	box	are	not	on	the	equations	sheet,
they	are	very	important	to	memorize.	You	will	use	them	in	countless
problems.	Chances	are,	you	will	use	them	so	much	that	you’ll	have	memorized
them	way	before	the	AP	exam.

—Jamie,	high	school	senior

Adding	Vectors
Let’s	take	two	vectors,	Q	and	Z	,	as	shown	in	Figure	9.3a	.

Figure	9.3a			Two	vectors.

Now,	in	Figure	9.3b	,	we	place	them	on	a	coordinate	plane.	We	will	move	them
around	so	that	they	line	up	head-to-tail.

Figure	9.3b			Vectors	on	a	coordinate	plane.

If	you	place	your	finger	at	the	origin	and	follow	the	arrows,	you	will	end	up	at
the	head	of	vector	Z	.	The	vector	sum	of	Q	and	Z	is	the	vector	that	starts	at	the
origin	and	ends	at	the	head	of	vector	Z	.	This	is	shown	in	Figure	9.3c	.



Figure	9.3c			Adding	vectors.

Physicists	call	the	vector	sum	the	“resultant	vector.”	Usually,	we	prefer	to	call	it
“the	resultant”	or,	as	in	our	diagram,	“	R	.”

How	to	add	vectors:
1.	Line	them	up	head-to-tail.
2.	Draw	a	vector	that	connects	the	tail	of	the	first	arrow	to	the	head	of	the	last

arrow.

Vector	Components,	Revisited
Breaking	a	vector	into	its	components	will	make	many	problems	simpler.	Here’s
an	example:

To	add	the	vectors	in	Figure	9.4a	,	all	you	have	to	do	is	add	their	x	-	and	y	-
components.	The	sum	of	the	x	-components	is	3	+	(−2)	=	1	units.	The	sum	of	the
y	-components	is	1	+	2	=	3	units.	The	resultant	vector,	therefore,	has	an	x	-
component	of	+1	units	and	a	y	-component	of	+3	units.	See	Figure	9.4b	.



Figure	9.4a			Adding	vectors.

Figure	9.4b			Final	sum	of	vectors.

Some	Final	Hints
1.	Make	sure	your	calculator	is	set	to	DEGREES,	not	radians.
2.	Always	use	units.	Always.	We	mean	it.	Always.

	Practice	Problems
1	.	A	canoe	is	paddled	due	north	across	a	lake	at	2.0	m/s	relative	to	still	water.



The	current	in	the	lake	flows	toward	the	east;	its	speed	is	0.5	m/s.	Which	of
the	following	vectors	best	represents	the	velocity	of	the	canoe	relative	to
shore?

(A)	2.5	m/s

(B)	2.1	m/s

(C)	2.5	m/s

(D)	1.9	m/s

(E)	1.9	m/s



2	.	Force	vector	A	has	magnitude	27.0	N	and	is	direction	74°	from	the	vertical,
as	shown	above.	Which	of	the	following	are	the	horizontal	and	vertical
components	of	vector	A	?

3	.	Which	of	the	following	is	a	scalar	quantity?

(A)	electric	force
(B)	gravitational	force
(C)	weight
(D)	mass
(E)	friction

	Solutions	to	Practice	Problems
1	.	B	—To	solve,	add	the	northward	2.0	m/s	velocity	vector	to	the	eastward	0.5
m/s	vector.	These	vectors	are	at	right	angles	to	one	another,	so	the	magnitude
of	the	resultant	is	given	by	the	Pythagorean	theorem.	You	don’t	have	a
calculator	on	the	multiple-choice	section,	though,	so	you’ll	have	to	be	clever.
There’s	only	one	answer	that	makes	sense!	The	hypotenuse	of	a	right	triangle
has	to	be	bigger	than	either	leg,	but	less	than	the	algebraic	sum	of	the	legs.
Only	B,	2.1	m/s,	meets	this	criterion.

2	.	A	—Again,	with	no	calculator,	you	cannot	just	plug	numbers	in	(though	if



you	could,	careful:	the	horizontal	component	of	A	is	27.0	N	cos	16°	because
16°	is	the	angle	from	the	horizontal).	Answers	B	and	E	are	wrong	because	the
vertical	component	is	bigger	than	the	horizontal	component,	which	doesn’t
make	any	sense	based	on	the	diagram.	Choice	C	is	wrong	because	the
horizontal	component	is	bigger	than	the	magnitude	of	the	vector	itself—
ridiculous!	Same	problem	with	choice	D,	where	the	horizontal	component	is
equal	to	the	magnitude	of	the	vector.	So	the	answer	must	be	A.

3	.	D	—A	scalar	has	no	direction.	All	forces	have	direction,	including	weight
(which	is	the	force	of	gravity).	Mass	is	just	a	measure	of	how	much	stuff	is
contained	in	an	object,	and	thus	has	no	direction.



CHAPTER 	 9

Vectors
1	.				Five	physics	students	are	asked	to	add	the	vectors	P	and	Q	to	find	the

resultant	vector	R	.	The	answers	from	each	student	are	in	the	following
responses.	Which	student	DID	NOT	add	the	vectors	correctly?

(A)			

(B)			

(C)			

(D)			

(E)			



2	.				A	pilot	flies	180	m/s	at	an	angle	30°	west	of	due	south	as	shown.	How
quickly	is	the	pilot	traveling	west?
(A)			90	m/s
(B)			104	m/s
(C)			156	m/s
(D)			208	m/s
(E)			360	m/s

Questions	3	and	4	refer	to	the	following	information:	A	fisherman	wishes	to
pilot	his	boat	directly	north	across	a	river	to	a	destination	marked	by	an	X	on
the	figure.	The	river	has	a	westward	current	of	3	m/s,	and	the	boat	can	travel
5	m/s	in	still	water.	The	fisherman	points	his	boat	at	a	heading	angle	of	θ	into
the	current	as	shown	and	begins	his	journey.

3	.				What	heading	angle	θ	should	the	fisherman	use	to	travel	directly	north
across	the	river?
(A)			30°
(B)			31°
(C)			37°



(D)			53°
(E)			59°

4	.				What	is	the	boat’s	resultant	velocity	while	traveling	due	north	across	the
river?
(A)			2.0	m/s
(B)			3.0	m/s
(C)			3.8	m/s
(D)			4.0	m/s
(E)			5.8	m/s

	Answers

1	.				E	—Vectors	should	be	added	head	to	tail.	Note:	Student	B	simply	showed
the	correct	resultant	vector	R	.	Student	C	chose	to	break	vector	P	into	its	x
and	y	components	and	add	them	to	the	vector	Q	.

2	.				A	—The	westward	component	of	the	velocity	is	given	by	the	following
equation:

3	.				C	—The	velocities	of	the	boat	and	the	current	must	be	added	to	produce	a
resultant	that	points	directly	north	as	shown.	The	angle	θ	is	found	by	using	



4	.				D	—The	velocities	of	the	boat	and	current	are	added	as	shown	in	the	figure,
which	forms	a	right	triangle.	The	resultant	velocity	can	be	found	using	the
Pythagorean	theorem	or	by	realizing	that	this	is	a	3-4-5	triangle.



CHAPTER 	 10

Free-Body	Diagrams	and	Equilibrium

IN	THIS	CHAPTER

Summary:	Free-body	diagrams	can	help	you	see	forces	as	vectors,	and	we’ll	review	torque	as	well	as	a
variety	of	forces:	normal	force,	tension,	friction,	forces	operating	on	inclined	planes,	and	static	and	kinetic
friction.

Key	Ideas
		A	free-body	diagram	is	a	picture	that	represents	an	object,	along	with	the
forces	acting	on	that	object.
		When	the	net	force	on	an	object	equals	zero,	that	object	is	in	equilibrium.
		The	normal	force	is	not	always	equal	to	the	weight	of	an	object.
		Tension	is	a	force	applied	by	a	rope	or	string.
		Friction	is	only	found	when	there	is	contact	between	two	surfaces.
		When	an	object	is	on	an	incline,	use	tilted	axes,	one	parallel	to	the	incline,
one	perpendicular.
		Torque	occurs	when	a	force	is	applied	to	an	object,	and	that	force	can	cause
the	object	to	rotate.

Relevant	Equations
On	an	inclined	plane,	the	weight	vector	can	be	broken	into	components:



The	force	of	friction	is	given	by

Ff	=	μFN

Physics,	at	its	essence,	is	all	about	simplification.	The	universe	is	a	complicated
place,	and	if	you	want	to	make	sense	of	it—which	is	what	physicists	try	to	do—
you	need	to	reduce	it	to	some	simplified	representation:	for	example,	with	free-
body	diagrams.

We	will	refer	regularly	to	forces.	A	force	refers	to	a	push	or	a	pull	applied	to
an	object.	Something	can	experience	many	different	forces	simultaneously—for
example,	you	can	push	a	block	forward	while	friction	pulls	it	backward,	but	the
net	force	is	the	vector	sum	of	all	of	the	individual	forces	acting	on	the	block.

Net	Force:	The	vector	sum	of	all	the	forces	acting	on	an	object

What	Is	a	Free-Body	Diagram?
A	free-body	diagram	is	a	picture	that	represents	one	or	more	objects,	along	with
the	forces	acting	on	those	objects.	The	objects	are	almost	always	drawn	as
rectangles	or	circles,	just	for	the	sake	of	simplicity,	and	the	forces	are	always
shown	as	vectors.	Figure	10.1	shows	a	few	examples.



Figure	10.1			Two	examples	of	free-body	diagrams.	As	you	see,	there	is	no
need	to	be	artistic	on	the	AP	exam.

Free-body	diagrams	are	important	because	they	help	us	to	see	forces	as
vectors.	And	if	you	can	add	vectors,	you	can	analyze	a	free-body	diagram.	(If
you	can’t	add	vectors,	you	didn’t	read	Chapter	9	carefully	enough.)

Let’s	look	at	the	two	examples	in	Figure	10.1	.	In	the	first,	a	force	is	directed
down.	This	force,	which	is	the	force	of	gravity,	was	labeled	in	the	diagram	as
“weight.”	The	force	of	gravity	on	the	hippo	(that	is,	the	hippo’s	weight)	pulls
downward.	In	the	second	example,	a	force	is	directed	to	the	right.	The	pineapple
is	being	pulled	by	a	rope	to	the	right.

Weight:	The	force	due	to	gravity,	equal	to	the	mass	of	an	object	times	g	,	the
gravitational	field	(about	10	N/kg	on	Earth)

You’ll	often	see	weight	abbreviated	as	mg	.	Just	be	careful	that	the	mass	you	use
is	in	kilograms.

For	the	rest	of	this	chapter,	we	focus	on	objects	in	equilibrium.



Equilibrium

When	the	net	force	on	an	object	equals	zero,	that	object	is	in	equilibrium.	At
equilibrium,	an	object	is	either	at	rest	or	moving	with	a	constant	velocity	,	but	it
is	not	accelerating.

You’ve	heard	of	Newton’s	first	law,	of	course:	an	object	maintains	its
velocity	unless	acted	upon	by	a	net	force.	Well,	an	object	in	equilibrium	is
obeying	Newton’s	first	law.

How	to	Solve	Equilibrium	Problems

We	have	a	tried-and-true	method.	Follow	it	every	time	you	see	an	equilibrium
situation.

1.				Draw	a	proper	free-body	diagram.
2.				Resolve	force	vectors	into	x	-	and	y	-components,	if	necessary.
3.				Write	an	expression	for	the	vector	sum	of	the	left–right	forces.	Then	write

an	expression	for	the	vector	sum	of	the	up–down	forces.	Set	each	of	these
expressions	equal	to	zero.

4.				Solve	the	resulting	algebraic	equations.

A	Brief	Interlude:	UNITS!
Before	we	lose	ourselves	in	the	excitement	of	free-body	diagrams,	we	need	to
pay	tribute	to	the	unit	of	force:	the	newton.	One	N	(as	newtons	are	abbreviated)
equals	one	kg·m/s2	.	We	discuss	why	1	newton	equals	1	kg·m/s2	in	a	future
chapter.	For	now,	let	it	suffice	that	any	force	can	be	measured	in	newtons.

A	Really	Simple	Equilibrium	Problem
For	those	of	you	who	prefer	to	splash	your	toes	in	the	metaphorical	swimming
pool	of	physics	before	getting	all	the	way	in,	this	section	is	for	you.	Look	at	this
situation:



Two	astronauts	tug	on	opposite	sides	of	a	satellite.	The	first	astronaut	tugs	to
the	left	with	a	force	of	30	N.	With	what	force	does	the	second	astronaut	tug	in
order	to	keep	the	satellite	at	rest?

The	solution	to	this	problem	is	painfully	obvious,	but	we’ll	go	through	the	steps
just	to	be	thorough.

Step	1	:	Draw	a	proper	free-body	diagram.

We	can	skip	Step	2	because	these	vectors	already	line	up	with	each	other,	so	they
do	not	need	to	be	resolved	into	components.

Step	3	:	Write	expressions	for	the	vector	sums.
This	problem	only	involves	left–right	forces,	so	we	only	need	one	expression.
Because	we	have	an	equilibrium	situation,	the	net	force	is	ZERO:

Step	4	:	Solve.

F	2	=	30	N

Very	good.	Now,	let’s	see	how	closely	you	were	paying	attention.	Here’s	the
same	problem,	with	a	slightly	different	twist.

Two	astronauts	tug	on	opposite	sides	of	a	satellite.	The	first	astronaut	tugs	to
the	left	with	a	force	of	30	N.	With	what	force	does	the	second	astronaut	tug	in
order	to	keep	the	satellite	moving	toward	him	at	a	constant	speed	of	20	m/s?

Think	for	a	moment.	Does	the	second	astronaut	have	to	apply	more,	less,	or	the
same	force	as	compared	to	the	previous	problem?

The	second	astronaut	applies	exactly	the	same	force	as	in	the	previous



problem!	An	object	moving	with	constant	velocity	is	in	equilibrium,	just	as	if	the
object	were	still.	This	is	a	central	concept	in	Newtonian	mechanics.

Normal	Force
Let’s	return	to	Earth	for	a	moment.

In	Figure	10.2	,	a	box	is	sitting	on	a	table.	The	force	of	gravity	pulls	downward
(as	with	the	hippo,	we’ve	labeled	this	force	“weight”).	We	know	from
experience	that	boxes	sitting	on	tables	do	not	accelerate	downward;	they	remain
where	they	are.	Some	force	must	oppose	the	downward	pull	of	gravity.

Figure	10.2			Normal	force.

This	force	is	called	the	normal	force,	1	and	it	is	abbreviated	FN	.	In	fact,
whenever	you	push	on	a	hard	surface,	that	surface	pushes	back	on	you—it	exerts
a	normal	force.	So,	when	you	stand	on	the	floor,	the	floor	pushes	up	on	you	with
the	same	amount	of	force	with	which	gravity	pulls	you	down,	and,	as	a	result,
you	don’t	fall	through	the	floor.

Normal	Force:	A	force	that	acts	perpendicular	to	the	surface	on	which	an
object	rests



The	normal	force	is	not	always	equal	to	the	weight	of	an	object!	Think	about	this
before	we	get	to	the	practice	problems.

Tension
Tension	is	a	force	applied	by	a	rope	or	string.	Here	are	two	of	our	favorite
tension	problems.	The	first	is	super	easy,	but	a	good	introduction	to	tension;	the
second	is	more	involved.

A	box	has	a	mass	of	5	kg	and	is	hung	from	the	ceiling	by	a	rope.	What	is	the
tension	in	the	rope?

Step	1	:	Free-body	diagram.



Step	2	:	Vector	components.
Hey!	These	vectors	already	line	up.	On	to	Step	3	.

Step	3	:	Equations.
Remember,	weight	is	equal	to	mass	times	the	gravitational	field,	or	mg	.

Step	4	:	Solve.

T	=	50	N

The	same	box	is	now	hung	by	two	ropes.	One	makes	a	45-degree	angle	with
the	ceiling;	the	other	makes	a	30-degree	angle	with	the	ceilign.	What	is	the
tension	in	each	rope?

Step	1	:	Free-body	diagram.



Step	2	:	Vector	components.

Step	3	:	Equations.
Let’s	start	with	the	x	-direction.

And	from	vector	analysis	we	know	that

so,

Similarly,	if	we	look	at	the	y	-direction,



and

so,

Step	4	:	Solve.
We	can	solve	Equation	1	and	Equation	2	simultaneously	and	find	T	1	and	T	2	.
We’ll	let	you	do	this	on	your	own,	2	but	in	case	you	want	to	check	your	answers,
T	1	=	37	N	and	T	2	=	45	N.	(These	are	reasonable	answers,	as	the	tension	in	each
rope	is	the	same	power	of	10	as	the	50	N	weight	of	the	box.)

Steps	1	,	2	,	and	3	are	the	important	steps.	Step	4	only	involves	math.	“ONLY
math?!?”	you	ask,	incredulous.	“That’s	the	toughest	part!”

Well,	maybe	for	some	people.	Getting	the	actual	correct	answer	does	depend
on	your	algebra	skills.	But,	and	this	is	important,	this	is	AP	Physics,	NOT	AP
Algebra	.	The	graders	of	the	AP	exam	will	assign	most	of	the	credit	just	for
setting	up	the	problem	correctly!	If	you’re	stuck	on	the	algebra,	skip	it!	Come	up
with	a	reasonable	answer	for	the	tensions,	and	move	on!

We’re	not	kidding.	Look	at	Chapter	7	,	which	discusses	approaches	to	the
free-response	section,	for	more	about	the	relative	importance	of	algebra.

Friction
Friction	is	only	found	when	there	is	contact	between	two	surfaces.

Friction:	A	force	acting	parallel	to	two	surfaces	in	contact.	If	an	object	moves,
the	friction	force	always	acts	opposite	the	direction	of	motion.



For	example,	let’s	say	you	slide	a	book	at	a	constant	speed	across	a	table.	The
book	is	in	contact	with	the	table,	and,	assuming	your	table	isn’t	frictionless,	the
table	will	exert	a	friction	force	on	the	book	opposite	its	direction	of	motion.
Figure	10.3	shows	a	free-body	diagram	of	that	situation.

Figure	10.3			Free-body	diagram	of	a	book	sliding	on	a	table.

We	know	that	because	the	book	represented	in	Figure	10.3	is	not	being	shoved
through	the	table	or	flying	off	it,	FN	must	equal	the	book’s	weight.	And	because
the	book	moves	at	constant	velocity,	the	force	you	exert	by	pushing	the	book,	F
push	,	equals	the	force	of	friction,	Ff	.	Remember,	being	in	equilibrium	does	not
necessarily	mean	that	the	book	is	at	rest.	It	could	be	moving	at	a	constant
velocity	.

How	do	we	find	the	magnitude	of	Ff	?

Mu	(μ	)	is	the	coefficient	of	friction.	This	is	a	dimensionless	number	(that	is,	it
doesn’t	have	any	units)	that	describes	how	big	the	force	of	friction	is	between
two	objects.	It	is	found	experimentally	because	it	differs	for	every	combination
of	materials	(for	example,	if	a	wood	block	slides	on	a	glass	surface),	but	it	will
usually	be	given	in	AP	problems	that	involve	friction.

And	if	μ	isn’t	given,	it	is	easy	enough	to	solve	for—just	rearrange	the
equation	for	μ	algebraically:



Remember,	when	solving	for	Ff	,	do	not	assume	that	FN	equals	the	weight	of	the
object	in	question.	Here’s	a	problem	where	this	reminder	comes	in	handy:

A	floor	buffer	consists	of	a	heavy	base	(m	=	15	kg)	attached	to	a	very	light
handle.	A	worker	pushes	the	buffer	by	exerting	a	force	P	directly	down	the
length	of	the	handle.	If	the	coefficient	of	friction	between	the	buffer	and	the
floor	is	μ	=	0.36,	what	is	the	magnitude	of	the	force	P	needed	to	keep	the
buffer	moving	at	a	constant	velocity?

The	free-body	diagram	looks	like	this:

Exam	tip	from	an	AP	Physics	veteran:
When	drawing	a	free-body	diagram,	put	the	tail	of	the	force	vectors	on	the
object,	with	the	arrow	pointing	away	from	the	object.	Never	draw	a	force



vector	pointing	into	an	object,	even	when	something	is	pushing,	as	with	the	P
force	in	this	example.

—Chris,	high	school	junior

Now,	in	the	vertical	direction,	there	are	three	forces	acting:	FN	acts	up;	weight
and	the	vertical	component	of	P	act	down.

Notice	that	when	we	set	up	the	equilibrium	equation	in	the	vertical	direction,	FN
-	(mg	+	Py	)	=	0,	we	find	that	FN	is	greater	than	mg	.

Let’s	finish	solving	this	problem	together.	We’ve	already	drawn	the	vertical
forces	acting	on	the	buffer,	so	we	just	need	to	add	the	horizontal	forces	to	get	a
complete	free-body	diagram	with	the	forces	broken	up	into	their	components
(Steps	1	and	2	):

Step	3	calls	for	us	to	write	equations	for	the	vertical	and	horizontal	directions.
We	already	found	the	equilibrium	equation	for	the	vertical	forces,



FN	-	(mg	+	Py	)	=	0,

and	it’s	easy	enough	to	find	the	equation	for	the	horizontal	forces,

Ff	-	Px	=	0.

To	solve	this	system	of	equations	(Step	4	),	we	can	reduce	the	number	of
variables	with	a	few	substitutions.	For	example,	we	can	rewrite	the	equation	for
the	horizontal	forces	as

μ	·FN	-	P	·cos	37°	=	0.

Furthermore,	we	can	use	the	vertical	equation	to	substitute	for	FN	,

FN	=	mg	+	P	·sin	37°.

Plugging	this	expression	for	FN	into	the	rewritten	equation	for	the	horizontal
forces,	and	then	replacing	the	variables	m,	g	,	and	μ	with	their	numerical	values,
we	can	solve	for	P	.	The	answer	is	P	=	93	N.

Static	and	Kinetic	Friction
You	may	have	learned	that	the	coefficient	of	friction	takes	two	forms:	static	and
kinetic	friction.	Use	the	coefficient	of	static	friction	if	something	is	stationary,
and	the	coefficient	of	kinetic	friction	if	the	object	is	moving.	The	equation	for
the	force	of	friction	is	essentially	the	same	in	either	case:	Ff	=	μFN	.

The	only	strange	part	about	static	friction	is	that	the	coefficient	of	static
friction	is	a	maximum	value.	Think	about	this	for	a	moment	…	if	a	book	just	sits
on	a	table,	it	doesn’t	need	any	friction	to	stay	in	place.	But	that	book	won’t	slide
if	you	apply	a	very	small	horizontal	pushing	force	to	it,	so	static	friction	can	act
on	the	book.	To	find	the	maximum	coefficient	of	static	friction,	find	out	how
much	horizontal	pushing	force	will	just	barely	cause	the	book	to	move;	then	use
Ff	=	μFN	.

Inclined	Planes
These	could	be	the	most	popular	physics	problems	around.	You’ve	probably
seen	way	too	many	of	these	already	in	your	physics	class,	so	we’ll	just	give	you



a	few	tips	on	approaching	them.

In	Figure	10.4	we	have	a	block	of	mass	m	resting	on	a	plane	elevated	an	angle	θ
above	the	horizontal.	The	plane	is	not	frictionless.	We’ve	drawn	a	free-body
diagram	of	the	forces	acting	on	the	block	in	Figure	10.5a	.

Figure	10.4			Generic	inclined-plane	situation.

Figure	10.5a			Forces	acting	on	the	block	in	Figure	10.4	.

Ff	is	directed	parallel	to	the	surface	of	the	plane,	and	FN	is,	by	definition,
directed	perpendicular	to	the	plane.	It	would	be	a	pain	to	break	these	two	forces
into	x	-	and	y	-components,	so	instead	we	will	break	the	“weight”	vector	into
components	that	“line	up”	with	Ff	and	FN	,	as	shown	in	Figure	10.5b	.



Figure	10.5b			Forces	acting	on	the	block	in	Figure	10.4	,	with	the	weight
vector	resolved	into	components	that	line	up	with	the	friction	force	and	the

normal	force.

Memorize	this

As	a	rule	of	thumb,	in	virtually	all	inclined-plane	problems,	you	can
always	break	the	weight	vector	into	components	parallel	and
perpendicular	to	the	plane,	where	the	component	parallel	to	(pointing
down)	the	plane	=	mg(sin	θ)	and	the	component	perpendicular	to	the
plane	=	mg(cos	θ).

This	rule	always	works,	as	long	as	the	angle	of	the	plane	is	measured	from	the
horizontal.

Even	Physics	C	Students	Must	Use	Free-Body	Diagrams
It	must	be	emphasized	that	even	Physics	C	students	must	go	through	the	four-
step	problem-solving	process	described	in	this	chapter.	Frequently,	Physics	C
students	try	to	take	shortcuts,	thinking	that	equilibrium	problems	are	easy,	only
to	miss	something	important.	If	free-body	diagrams	are	good	enough	for
professional	physicists	to	use,	they	are	good	enough	for	you.



Torque
Torque	occurs	when	a	force	is	applied	to	an	object,	and	that	force	can	cause	the
object	to	rotate.

Torque	=	Fd

In	other	words,	the	torque	exerted	on	an	object	equals	the	force	exerted	on	that
object	(F	)	multiplied	by	the	distance	between	where	the	force	is	applied	and	the
fulcrum	(d	)	as	long	as	the	force	acts	perpendicular	to	the	object.

Fulcrum:	The	point	about	which	an	object	rotates

Figure	10.6	shows	what	we	mean:

Figure	10.6			The	torque	applied	to	this	bar	equals	Fd	.

The	unit	of	torque	is	the	newton-meter.
Here’s	an	example.

Bob	is	standing	on	a	bridge.	The	bridge	itself	weighs	10,000	N.	The	span
between	pillars	A	and	B	is	80	m.	Bob	is	20	m	from	the	center	of	the	bridge.
His	mass	is	100	kg.	Assuming	that	the	bridge	is	in	equilibrium,	find	the	force
exerted	by	pillar	B	on	the	bridge.



Step	1	:	Free-body	diagram.
We’ll	use	point	A	as	the	fulcrum	to	start	with.	Why?	In	a	static	equilibrium
situation,	since	the	bridge	isn’t	actually	rotating,	any	point	on	the	bridge	could
serve	as	a	fulcrum.	But	we	have	two	unknown	forces	here,	the	forces	of	the
supports	A	and	B	.	We	choose	the	location	of	one	of	these	supports	as	the
fulcrum,	because	now	that	support	provides	zero	torque—the	distance	from	the
fulcrum	becomes	zero!	Now	all	we	have	to	do	is	solve	for	the	force	of	support	B
.

The	diagram	below	isn’t	a	true	“free-body	diagram,”	because	it	includes	both
distance	and	forces,	but	it	is	useful	for	a	torque	problem.	Bob’s	weight	acts
downward	right	where	he	stands.

The	bridge’s	weight	is	taken	into	account	with	a	force	vector	acting	at	the
bridge’s	center	of	mass;	that	is,	40	m	to	the	right	of	pillar	A	.	This	is	a	generally
valid	approach—replace	the	weight	of	an	extended	object	with	a	single	weight
vector	acting	at	the	center	of	mass.



Step	2	:	Vector	components.
We	don’t	have	to	worry	about	vector	components	here.	(We	would	have	if	the
forces	had	not	acted	perpendicular	to	the	bridge.)

Step	3	:	Equations.

Torquenet	=	counterclockwise	-	clockwise	=	0
(FB	)(80	m)	-	[(100	kg·10	N/kg)(20	m)	+	(10,000	N)(40	m)]	=	0

Step	4	:	Solve.	FB	=	5300	N
This	is	reasonable	because	pillar	B	is	supporting	less	than	half	of	the	11,000	N
weight	of	the	bridge	and	Bob.	Because	Bob	is	closer	to	pillar	A	,	and	otherwise
the	bridge	is	symmetric,	A	should	bear	the	majority	of	the	weight.

The	Physics	C	exam	will	often	expect	you	to	find	the	torque	provided	by	a
force	that	acts	at	an	angle.	For	example,	consider	a	force	F	acting	on	a	bar	at	an
angle	θ	,	applied	a	distance	x	from	a	pivot.	How	much	torque	does	this	force
provide?	See	Figure	10.7	.

Figure	10.7			Force	F	acting	on	a	bar	at	an	angle	θ.

To	solve,	break	the	force	vector	into	horizontal	and	vertical	components,	as
shown	in	Figure	10.8	.



Figure	10.8			Break	the	force	vector	into	horizontal	and	vertical
components.

The	vertical	component	of	F	applies	a	torque	of	(F	sin	θ	)x	.	The	horizontal
component	of	F	does	not	apply	any	torque,	because	it	could	not	cause	the	bar	to
rotate.	So,	the	total	torque	provided	by	F	is	(F	sin	θ	)x	.

Lever	Arm
The	“lever	arm”	for	a	force	is	the	closest	distance	from	the	fulcrum	to	the	line	of
that	force.	Then,	the	torque	provided	by	a	force	is	the	force	times	the	lever	arm.

Consider	Figure	10.9	,	which	represents	the	same	situation	as	Figure	10.7	.
Instead	of	breaking	F	into	components,	continue	the	line	of	the	force.	The	torque
is	F	times	the	lever	arm	shown	in	the	diagram.	By	trigonometry,	you	can	see	that
the	lever	arm	is	equal	to	x	sin	θ	.	No	matter	how	you	look	at	it,	the	torque
provided	by	F	is	still	(F	sin	θ	)x	.

Figure	10.9			Force	F	acting	on	a	bar	at	an	angle	θ

	Practice	Problems



1	.	A	50-g	mass	is	hung	by	string	as	shown	in	the	picture	above.	The	left-hand
string	is	horizontal;	the	angled	string	measures	30°	to	the	horizontal.	What	is
the	tension	in	the	angled	string?

2	.	A	6000-kg	bus	sits	on	a	30°	incline.	A	crane	attempts	to	lift	the	bus	off	of	the
plane.	The	crane	pulls	perpendicular	to	the	plane,	as	shown	in	the	diagram.
How	much	force	must	the	crane	apply	so	that	the	bus	is	suspended	just	above
the	surface?	[cos	30°	=	0.87,	sin	30°	=	0.50]

(A)	52,000	N
(B)	30,000	N
(C)	6000	N
(D)	5200	N
(E)	300	N

3	.	Give	two	examples	of	a	situation	in	which	the	normal	force	on	an	object	is
less	than	the	object’s	weight.	Then	give	an	example	of	a	situation	in	which
there	is	NO	normal	force	on	an	object.



4	.	A	150-N	box	sits	motionless	on	an	inclined	plane,	as	shown	above.	What	is
the	angle	of	the	incline?

5	.	A	50-g	meterstick	is	to	be	suspended	by	a	single	string.	A	100-g	ball	hangs
from	the	left-hand	edge	of	the	meterstick.	Where	should	the	string	be	attached
so	that	the	meterstick	hangs	in	equilibrium?

(A)	at	the	left-hand	edge
(B)	40	cm	from	left-hand	edge
(C)	30	cm	from	right-hand	edge
(D)	17	cm	from	left-hand	edge
(E)	at	the	midpoint	of	the	meterstick

	Solutions	to	Practice	Problems



1	.	

Call	the	tension	in	the	angled	rope	T	2	.	In	the	y-direction,	we	have	T	2,	y	=	T	2
(sin	30	°)	acting	up,	and	mg	acting	down.	Set	“up”	forces	equal	to	“down”
forces	and	solve	for	tension:	T	2	=	mg	/(sin	30°).	Don’t	forget	to	use	the	mass
in	KILOgrams,	i.e.,	0.050	kg.	The	tension	thus	is	(0.050	kg)(10	N/kg)/(0.5)	=
1.0	N.	This	is	reasonable	because	the	tension	is	about	the	same	order	of
magnitude	as	the	weight	of	the	mass.

2	.	

A	—Because	the	force	of	the	crane,	F	c	,	acts	perpendicular	to	the	plane,	the
parallel-to-the-plane	direction	is	irrelevant.	So	all	we	need	to	do	is	set	F	c
equal	to	mg	(cos	30°)	=	(6000	kg)(10	N/kg)(.87)	and	plug	in.	F	c	=	52,000	N.
This	is	a	reasonable	answer	because	it	is	less	than—but	on	the	same	order	of
magnitude	as—the	weight	of	the	bus.

3	.	When	a	block	rests	on	an	inclined	plane,	the	normal	force	on	the	block	is	less
than	the	block’s	weight,	as	discussed	in	the	answer	to	#2.	Another	example	in
which	the	normal	force	is	less	than	an	object’s	weight	occurs	when	you	pull	a
toy	wagon.

In	any	situation	where	an	object	does	not	rest	on	a	surface	(for	example,



when	something	floats	in	space),	there	is	no	normal	force.

4	.	This	free-body	diagram	should	be	very	familiar	to	you	by	now.

The	box	is	in	equilibrium,	so	Ff	must	equal	mg	(sin	θ	),	and	FN	must	equal
mg	(cos	θ	).

μ	·FN	=	μ	·mg	(cos	θ	)	=	mg	(sin	θ	).

Plugging	in	the	values	given	in	the	problem	we	find	that	μ	=	17°.	This	answer
seems	reasonable	because	we’d	expect	the	incline	to	be	fairly	shallow.

5	.	D	—This	is	a	torque	problem,	and	the	fulcrum	is	wherever	the	meterstick	is
attached	to	the	string.	We	know	that	the	meterstick’s	center	of	mass	is	at	the
50-cm	mark,	so	we	can	draw	the	following	picture.

Because	the	stick	is	in	equilibrium,	the	clockwise	torques	equal	the
counterclockwise	torques:	(1	N)(x	)	=	(0.5	N)(50	-	x	).	So	x	=	something	in
the	neighborhood	of	25/1.5	∼	17	cm.	This	answer	is	less	than	50	cm,	and	is
closer	to	the	edge	with	the	heavy	mass,	so	it	makes	sense.

	Rapid	Review



•			A	free-body	diagram	is	a	simplified	representation	of	an	object	and	the	forces
acting	on	it.

•			When	the	net	force	on	an	object	is	zero,	it	is	in	equilibrium.	This	means	that	it
is	either	at	rest	or	that	it	is	moving	at	a	constant	velocity.

•			To	solve	an	equilibrium	problem,	draw	a	good	free-body	diagram,	resolve	all
forces	into	x	-	and	y	-components,	and	then	set	the	vector	sum	of	the	x	-
components	equal	to	zero	and	the	vector	sum	of	the	y	-components	equal	to
zero.

•			The	units	of	force	are	newtons,	where	1	N	=	1	kg·m/s2	.

•			Torque	equals	the	force	exerted	on	an	object	multiplied	by	the	distance
between	where	that	force	is	applied	and	the	fulcrum	(the	point	about	which	an
object	can	rotate).	When	an	object	is	in	equilibrium,	the	counterclockwise
torques	equal	the	clockwise	torques.

•			A	“normal	force”	means	the	force	of	a	solid	surface	pushing	perpendicular	to
that	surface.	The	normal	force	is	NOT	always	equal	to	an	object’s	weight.



1	When	physicists	say	“normal,”	they	mean	“perpendicular.”	The	word	“normal”	in	its	conventional
meaning	simply	does	not	apply	to	physicists.

2	Try	solving	the	x	-axis	equation	for	T	1	,	then	plug	that	into	the	y	-axis	equation:

Plug	in	the	value	of	cos	45°,	os	30°,	sin	30°,	sin	45°	…	and	now	it’s	easy	to	solve	for	T2	=	45
N.



CHAPTER 	 10

Free	Body	Diagrams	and
Equilibrium

1	.				A	car	is	parked	on	a	hill.	Which	of	the	following	figures	correctly	shows	the
forces	acting	on	the	car?

(A)			

(B)			



(C)			

(D)			

(E)			

Questions	2	and	3	refer	to	the	following	information:	A	student	pulls	a	20	kg
dolly	to	the	right	at	a	constant	rate	of	1	m/s	with	an	80	kg	force	angled	60°
above	the	horizontal	ground	as	shown	in	the	figure.	The	coefficient	of
friction	between	the	dolly	and	the	ground	is	0.1.

2	.				The	normal	force	from	the	ground	on	the	dolly	is	closest	to
(A)			100	N
(B)			130	N
(C)			160	N
(D)			170	N
(E)			200	N

3	.				Which	of	the	following	equations	correctly	models	the	relationship	between
the	forces	in	the	horizontal	direction?



(A)			

(B)			

(C)			

(D)			

(E)			

4	.				An	eight-spoke	wheel	with	a	radius	of	R	is	free	to	rotate	on	a	horizontal
axis	with	masses	hung	from	the	end	of	three	of	the	spokes,	as	shown	in	the
figure.	The	spokes	are	evenly	spaced,	and	the	wheel	is	in	equilibrium.	Two
masses	are	known	and	have	a	mass	of	m	.	What	must	the	third	mass	be	in
order	to	maintain	equilibrium?



(A)			m

(B)			2m

(C)			m	(sin	45°)

(D)			

(E)			m	=0	because	the	two	existing	masses	already	create	equilibrium.

	Answers

1	.				E	—Gravity	(mg	)	always	points	downward,	and	normal	force	(FN	)	is
always	perpendicular	to	the	contact	surface.	Finally,	you	need	friction	to
keep	the	car	stationary	in	equilibrium.	Friction	is	always	parallel	to	the
contact	surface	and	opposite	to	the	direction	the	object	is	trying	to	slide.

2	.				B	—

3	.				A	—The	forces	in	the	horizontal	direction	must	cancel	each	other	out
because	the	object	is	moving	at	a	constant	velocity;	thus,	it	is	in	dynamics
equilibrium.	The	horizontal	forces	are	from	the	student	to	the	right	80	cos
60°	and	from	friction	μFN	.	to	the	left,	where	FN	=	mg	-	80	sin	60°.	Equating
the	forces	in	the	positive	and	negative	directions	we	get
80	cos	60°	=	μFN



4	.				D	—The	center	mass	does	not	produce	a	torque	since	it	is	hung	directly
below	the	pivot	point/fulcrum.	The	right	mass	produces	a	clockwise	torque
of	Rmg	.	The	unknown	mass	must	produce	a	counterclockwise	torque	to
counter	this	clockwise	torque.	Torque	is	calculated	as	rF	sinθ.	Thus,



CHAPTER 	 11

Kinematics

IN	THIS	CHAPTER

Summary:	As	soon	as	an	object’s	velocity	changes,	you	need	to	analyze	the	problem	using	kinematics,
which	deals	with	aspects	of	motion	separate	from	considerations	of	mass	and	force.

Key	Ideas
		Kinematics	problems	involve	five	variables:	initial	velocity,	final	velocity,
displacement,	acceleration,	and	time	interval.
		Use	the	three	kinematics	equations	whenever	acceleration	is	constant.
		Average	speed	is	the	total	distance	in	a	given	time	divided	by	the	time	it	takes
you	to	travel	that	distance.
		Velocity	is	just	like	speed,	except	it’s	a	vector.
		Acceleration	is	the	change	in	velocity	divided	by	a	time	interval.
		Displacement	is	the	vector	equivalent	of	distance.
		The	key	rule	of	projectile	motion	is	that	an	object’s	motion	in	one	dimension
does	not	affect	its	motion	in	any	other	dimension.

Relevant	Equations
The	constant-acceleration	kinematics	equations,	which	we	refer	to	as	the	“star”
equations:



The	equilibrium	problems	we	saw	in	the	last	chapter	all	had	something	in
common:	there	was	no	acceleration.	Sure,	an	object	can	move	at	a	constant
velocity	and	still	be	in	equilibrium,	but	as	soon	as	an	object’s	velocity	changes,
you	need	a	new	set	of	tricks	to	analyze	the	situation.	This	is	where	kinematics
comes	in.

Velocity,	Acceleration,	and	Displacement
We’ll	start	with	a	few	definitions.

In	this	definition,	Δx	means	“displacement”	and	Δt	means	“time	interval.”
Average	speed	is	the	total	displacement	you	travel	in	a	straight	line	in	a	given
time	divided	by	the	time	it	takes	you	to	travel	that	distance.	This	is	different
from	“instantaneous	speed,”	which	is	your	speed	at	any	given	moment.
WARNING:	The	formula	you	learned	in	seventh	grade,	“speed	=	distance/time”
is	ONLY	valid	for	an	average	speed,	or	when	something	is	moving	with	constant
speed.	If	an	object	speeds	up	or	slows	down,	and	you	want	to	know	its	speed	at
some	specific	moment,	don’t	use	this	equation!	1

Questions	on	the	AP	exam	tend	to	focus	on	velocity	more	than	speed,	because
velocity	says	more	about	an	object’s	motion.	(Remember,	velocity	has	both
magnitude	and	direction.)
Acceleration	occurs	when	an	object	changes	velocity.



The	symbol	Δ	means	“change	in.”	So	Δv	=	vf	−	v	0	,	where	v	f	means	“final
velocity”	and	v	0	means	“initial	velocity”	and	is	pronounced	“v-naught.”
Similarly,	Δt	is	the	time	interval	during	which	this	change	in	velocity	occurred.

Just	as	velocity	is	the	vector	equivalent	of	speed,	displacement	is	the	vector
equivalent	of	distance—it	has	both	magnitude	and	direction.

So,	let’s	say	that	you	head	out	your	front	door	and	walk	20	m	south.	If	we	define
north	to	be	the	positive	direction,	then	your	displacement	was	“−20	m.”	If	we
had	defined	south	to	be	the	positive	direction,	your	displacement	would	have
been	“+20	m.”	Regardless	of	which	direction	was	positive,	the	distance	you
traveled	was	just	“20	m.”	(Or	consider	this:	If	you	walk	20	m	north,	followed	by
5	m	back	south,	your	displacement	is	15	m,	north.	Your	displacement	is	not	25
m.)

Constant-Acceleration	Kinematics	Equations
Putting	all	of	these	definitions	together,	we	can	come	up	with	some	important
lists.	First,	we	have	our	five	variables:

Using	just	these	five	variables,	we	can	write	the	three	most	important	kinematics
equations.	An	important	note:	The	following	equations	are	valid	ONLY	when
acceleration	is	constant.	We	repeat:	ONLY	WHEN	ACCELERATION	IS
CONSTANT	.	Which	is	most	of	the	time.	2



We	call	these	equations	the	“star	equations.”	You	don’t	need	to	call	them	the
“star	equations,”	but	just	be	aware	that	we’ll	refer	to	the	first	equation	as	“*	,”
the	second	as	“**	,”	and	the	third	as	“***	”	throughout	this	chapter.

These	are	the	only	equations	you	really	need	to	memorize	for	kinematics
problems.

Constant-Acceleration	Kinematics	Problem-Solving

Step	1	:	Write	out	all	five	variables	in	a	table.	Fill	in	the	known	values,	and	put	a
“?”	next	to	the	unknown	values.

Step	2	:	Count	how	many	known	values	you	have.	If	you	have	three	or	more,
move	on	to	Step	3	.	If	you	don’t,	find	another	way	to	solve	the	problem
(or	to	get	another	known	variable).

Step	3	:	Choose	the	“star	equation”	that	contains	all	three	of	your	known
variables.	Plug	in	the	known	values,	and	solve.

Step	4	:	Glory	in	your	mastery	of	physics.	Feel	proud.	Put	correct	units	on	your
answer	.

Be	sure	that	you	have	committed	these	steps	to	memory.	Now,	let’s	put	them	into
action.

A	rocket-propelled	car	begins	at	rest	and	accelerates	at	a	constant	rate	up	to	a
velocity	of	120	m/s.	If	it	takes	6	s	for	the	car	to	accelerate	from	rest	to	60	m/s,
how	long	does	it	take	for	the	car	to	reach	120	m/s,	and	how	far	does	it	travel	in
total?



Before	we	solve	this	problem—or	any	problem,	for	that	matter—we	should	think
about	the	information	it	provides.	The	problem	states	that	acceleration	is
constant,	so	that	means	we	can	use	our	kinematics	equations.	Also,	it	asks	us	to
find	two	values,	a	time	and	a	distance.	Based	on	the	information	in	the	problem,
we	know	that	the	time	needed	for	the	car	to	reach	120	m/s	is	greater	than	6	s
because	it	took	6	s	for	the	car	just	to	reach	60	m/s.	Moreover,	we	can	estimate
that	the	car	will	travel	several	hundred	meters	in	total,	because	the	car’s	average
velocity	must	be	less	than	120	m/s,	and	it	travels	for	several	seconds.

So	now	let’s	solve	the	problem.	We’ll	use	our	four-step	method.

Step	1	:	Table	of	variables.
The	car	begins	at	rest,	so	v	0	=	0	m/s.	The	final	velocity	of	the	car	is	120	m/s.
We’re	solving	for	time	and	displacement,	so	those	two	variables	are	unknown.
And,	at	least	for	right	now,	we	don’t	know	what	the	acceleration	is.

Step	2	:	Count	variables.
We	only	have	two	values	in	our	chart,	but	we	need	three	values	in	order	to	use
our	kinematics	equations.	Fortunately,	there’s	enough	information	in	the	problem
for	us	to	solve	for	the	car’s	acceleration.

Acceleration	is	defined	as	a	change	in	velocity	divided	by	the	time	interval
during	which	that	change	occurred.	The	problem	states	that	in	the	first	6	s,	the
velocity	went	from	0	m/s	to	60	m/s.



We	now	have	values	for	three	of	our	variables,	so	we	can	move	to	Step	3	.

Step	3	:	Use	“star	equations”	to	solve.
All	three	of	our	known	values	can	be	plugged	into	*,	which	will	allow	us	to
solve	for	t	.

Now	that	we	know	t	,	we	can	use	either	**	or	***	to	solve	for	displacement.
Let’s	use	**:

Step	4	:	Units.
Always	remember	units!	And	make	sure	that	your	units	are	sensible—if	you	find
that	an	object	travels	a	distance	of	8	m/s,	you’ve	done	something	screwy.	In	our
case,	the	answers	we	found	have	sensible	units.	Also,	our	answers	seem
reasonable	based	on	the	initial	estimates	we	made:	It	makes	sense	that	the	car
should	travel	a	bit	more	than	6	s,	and	it	makes	sense	that	it	should	go	several
hundred	meters	(about	half	a	mile)	in	that	time.

Freefall
Problems	that	involve	something	being	thrown	off	a	cliff	3	are	great,	because
vertical	acceleration	in	these	problems	equals	g	in	just	about	every	case.



g	:	The	acceleration	due	to	gravity	near	the	Earth’s	surface;	about	10	m/s2

Falling-object	problems	should	be	solved	using	the	method	we	outlined	above.
However,	you	have	to	be	really	careful	about	choosing	a	positive	direction	and
sticking	to	it.	That	is,	figure	out	before	you	solve	the	problem	whether	you	want
“up”	to	be	positive	(in	which	case	a	equals	−10	m/s2	)	or	“down”	to	be	positive
(where	a	would	therefore	equal	+10	m/s2	).

Exam	tip	from	an	AP	Physics	veteran:
You	may	remember	that	a	more	precise	value	for	g	is	9.80	m/s2	.	That’s
correct.	But	estimating	g	as	10	m/s2	is	encouraged	by	the	AP	readers	to	make
calculation	quicker.

—Jake,	high	school	junior

Here’s	a	practice	problem:

You	are	standing	on	a	cliff,	30	m	above	the	valley	floor.	You	throw	a
watermelon	vertically	upward	at	a	velocity	of	3	m/s.	How	long	does	it	take
until	the	watermelon	hits	the	valley	floor?



Begin	by	defining	the	positive	direction.	We	will	call	“up”	positive.	Then	use	the
four-step	method	to	solve	the	problem.

Step	1	:	Table	of	variables.

Why	do	we	always	indicate	what	part	of	the	motion	the	kinematics	chart	is
for?	Well,	this	problem	could	be	solved	instead	by	making	two	separate	charts:
one	for	the	upward	motion	(where	vf	would	be	zero),	and	one	for	the
downward	motion	(where	v	o	would	be	zero).	Be	crystal	clear	how	much	of	an
object’s	motion	you	are	considering	with	a	chart.

Remember	that	displacement	is	a	vector	quantity.	Even	though	the	melon	goes
up	before	coming	back	down,	the	displacement	is	simply	equal	to	the	height	at
which	the	melon	ends	its	journey	(0	m)	minus	its	initial	height	(30	m).	Another
way	to	think	about	displacement:	In	total,	the	melon	ended	up	30	m	BELOW
where	it	started.	Because	down	is	the	negative	direction,	the	displacement	is	−30
m.

Step	2	:	Count	variables.
Three!	We	can	solve	the	problem.



Step	3	:	Solve.
The	rest	of	this	problem	is	just	algebra.	Yes,	you	have	to	do	it	right,	but	setting
up	the	problem	correctly	and	coming	up	with	an	answer	that’s	reasonable	is
more	important	than	getting	the	exact	right	answer.	Really!	If	this	part	of	an	AP
free-response	problem	is	worth	5	points,	you	might	earn	4	of	those	points	just	for
setting	up	the	equation	and	plugging	in	values	correctly,	even	if	your	final
answer	is	wrong.

But	which	equation	do	you	use?	We	have	enough	information	to	use	**	(x	−
x	0	=	v	0	t	+	1	/2	at	2	)	to	solve	for	t	.	Note	that	using	**	means	that	we’ll	have	to
solve	a	quadratic	equation;	you	can	do	this	with	the	help	of	the	quadratic
formula.	4	Or,	if	you	have	a	graphing	calculator,	you	can	use	it	to	solve.	But
almost	always	there’s	a	way	to	avoid	the	quadratic.

Algebra	hint:	You	can	avoid	quadratics	in	all	constant	acceleration
kinematics	problems	by	solving	in	a	roundabout	way.	Try	solving	for	the
velocity	when	the	watermelon	hits	the	ground	using	***	
then	plug	into	*	(v	f	=	v	0	+	at	).	This	gives	you	the	same	answer.

What	If	Acceleration	Isn’t	Constant?
A	typical	Physics	C	kinematics	question	asks	you	to	use	calculus	to	find
position,	velocity,	or	acceleration	functions.	Then	you	can	solve	a	motion
problem	even	if	acceleration	is	not	constant.	The	way	to	remember	what	to	do	is,
first	and	foremost,	to	understand	graphical	kinematics	as	discussed	in	the	section
below.	Then,	we	know	that	the	slope	of	a	graph	is	related	to	the	derivative	of	a
function;	the	area	under	a	graph	is	related	to	the	integral	of	a	function.
Therefore:



•			To	find	velocity	from	a	position	function,	take	the	derivative	with	respect	to
time:	

•			To	find	acceleration	from	a	velocity	function,	also	take	the	time	derivative:	

•			To	find	position	from	a	velocity	function,	take	the	integral	with	respect	to
time:	

•			To	find	velocity	from	an	acceleration	function,	take	the	time	integral:	

Most	of	the	time,	even	on	the	Physics	C	exam,	you’ll	be	able	just	to	use	the	star
equations	to	solve	a	kinematics	problem.	Reserve	your	use	of	calculus	for	those
problems	that	explicitly	include	an	unusual	function	for	position,	velocity,	or
acceleration.

Projectile	Motion
Things	don’t	always	move	in	a	straight	line.	When	an	object	moves	in	two
dimensions,	we	look	at	vector	components.

The	super-duper-important	general	rule	is	this:	An	object’s	motion	in	one
dimension	does	not	affect	its	motion	in	any	other	dimension	.

The	most	common	kind	of	two-dimensional	motion	you	will	encounter	is
projectile	motion.	The	typical	form	of	projectile-motion	problems	is	the
following:

“A	ball	is	shot	at	a	velocity	v	from	a	cannon	pointed	at	an	angle	è	above	the
horizontal	…”

No	matter	what	the	problem	looks	like,	remember	these	rules:

•			The	vertical	component	of	velocity,	vy	,	equals	v	(sin	θ	).
•			The	horizontal	component	of	velocity,	vx	,	equals	v	(cos	θ	)	when	θ	is



measured	relative	to	the	horizontal.
•			Horizontal	velocity	is	constant.
•			Vertical	acceleration	is	g	,	directed	downward.

Here’s	a	problem	that	combines	all	of	these	rules:

A	ball	is	shot	at	a	velocity	25	m/s	from	a	cannon	pointed	at	an	angle	θ	=	30°
above	the	horizontal.	How	far	does	it	travel	before	hitting	the	level	ground?

We	begin	by	defining	“up”	to	be	positive	and	writing	our	tables	of	variables,	one
for	horizontal	motion	and	one	for	vertical	motion.

Note	that	because	horizontal	velocity	is	constant,	on	the	horizontal	table,	v	f	=	v	0
,	and	a	=	0.	Also,	because	the	ball	lands	at	essentially	the	same	height	it	was
launched	from,	Δx	=	0	on	the	vertical	table.	You	should	notice,	too,	that	we
rounded	values	in	the	tables	to	two	significant	figures	(for	example,	we	said	that
v	0	in	the	vertical	table	equals	13	m/s,	instead	of	12.5	m/s).	We	can	do	this
because	the	problem	is	stated	using	only	two	significant	figures	for	all	values,	so
rounding	to	two	digits	is	acceptable,	and	it	makes	doing	the	math	easier	for	us.

We	know	that	t	is	the	same	in	both	tables—the	ball	stops	moving



horizontally	at	the	same	time	that	it	stops	moving	vertically	(when	it	hits	the
ground).	We	have	enough	information	in	the	vertical	table	to	solve	for	t	by	using
equation	**.

Using	this	value	for	t	,	we	can	solve	for	x	−	x	0	in	the	horizontal	direction,	again
using	**.

The	cannonball	traveled	57	m,	about	half	the	length	of	a	football	field.
You	may	have	learned	in	your	physics	class	that	the	range	of	a	projectile

(which	is	what	we	just	solved	for)	is

If	you	feel	up	to	it,	you	can	plug	into	this	equation	and	show	that	you	get	the
same	answer	we	just	got.	There’s	no	need	to	memorize	the	range	equation,	but
it’s	good	to	know	the	conceptual	consequences	of	it:	the	range	of	a	projectile	on
level	earth	depends	only	on	the	initial	speed	and	angle,	and	the	maximum	range
is	when	the	angle	is	45°.

A	Final	Word	About	Kinematics	Charts
The	more	you	practice	kinematics	problems	using	our	table	method,	the	better
you’ll	get	at	it,	and	the	quicker	you’ll	be	able	to	solve	these	problems.	Speed	is
important	on	the	AP	exam,	and	you	can	only	gain	speed	through	practice.	So	use
this	method	on	all	your	homework	problems,	and	when	you	feel	comfortable
with	it,	you	might	want	to	use	it	on	quizzes	and	tests.	The	other	benefit	to	the
table	method,	besides	speed,	is	consistency;	it	forces	you	to	set	up	every
kinematics	problem	the	same	way,	every	time.	This	is	a	time-tested	strategy	for
success	on	the	AP	exam.



Motion	Graphs
You	may	see	some	graphs	that	relate	to	kinematics	on	the	AP	test.	They	often
look	like	those	in	Figure	11.1	.	We	call	these	graphs	by	the	names	of	their	axes:
For	example,	the	top	graph	in	Figure	11.1	is	a	“position–time	graph”	and	the
second	one	is	a	“velocity–time	graph.”

Figure	11.1			Typical	motion	graphs.	(As	an	excercise,	you	may	want	to
describe	the	motion	these	represent;	answers	are	at	the	end	of	this	section.)

Here	are	some	rules	to	live	by:

•			The	slope	of	a	position–time	graph	at	any	point	is	the	velocity	of	the	object	at
that	point	in	time.

•			The	slope	of	a	velocity–time	graph	at	any	point	is	the	acceleration	of	the
object	at	that	point	in	time.

•			The	area	under	a	velocity–time	graph	between	two	times	is	the	displacement
of	the	object	during	that	time	interval.

It’s	sometimes	confusing	what	is	meant	by	the	area	“under”	a	graph.	In	the
velocity–time	graphs	below,	the	velocity	takes	on	both	positive	and	negative
values.	To	find	the	object’s	displacement,	we	first	find	the	area	above	the	t	-axis;



this	is	positive	displacement.	Then	we	subtract	the	area	below	the	t	-axis,	which
represents	negative	displacement.	The	correct	area	to	measure	is	shown
graphically	in	Figure	11.2a	.	Whatever	you	do,	don’t	find	the	area	as	shown	in
Figure	11.2b	!	When	we	say	“area,”	we	measure	that	area	to	the	t	-axis	only.

Figure	11.2a			:	Do	this.

Figure	11.2b			:	Don’t	do	this.

Problems	involving	graphical	analysis	can	be	tricky	because	they	require	you	to
think	abstractly	about	an	object’s	motion.	For	practice,	let’s	consider	one	of	the
most	common	velocity–time	graphs	you’ll	see:

A	ball’s	velocity	as	a	function	of	time	is	graphed	below.	Describe	with	words
the	ball’s	motion.	(The	positive	direction	is	up.)



Whenever	you	have	to	describe	motion	in	words,	do	so	in	everyday	language,
not	physics-speak.	Don’t	say	the	word	“it”;	instead,	give	the	object	some
specificity.	Never	say	“positive”	or	“negative”;	+	and	−	merely	represent
directions,	so	name	these	directions.	5

In	this	case,	let’s	consider	a	ball	going	up	(positive)	and	down	(negative).
Here’s	how	we’d	answer	the	question:

“At	first	the	ball	is	moving	upward	pretty	fast,	but	the	ball	is	slowing
down	while	going	upward.	(I	know	this	because	the	speed	is	getting	closer
to	zero	in	the	first	part	of	the	graph.)	The	ball	stops	for	an	instant
(because	the	v–t	graph	crosses	the	horizontal	axis);	then	the	ball	begins
to	speed	up	again,	but	this	time	moving	downward.”
Now,	no	numerical	values	were	given	in	the	graph.	But	would	you	care	to

hazard	a	guess	as	to	the	likely	slope	of	the	graph’s	line	if	values	were	given?	6

Figure	11.1	Graphs
The	position–time	graph	has	a	changing	slope,	so	the	speed	of	the	object	is
changing.	The	object	starts	moving	one	way,	then	stops	briefly	(where	the	graph
reaches	its	minimum,	the	slope,	and	thus	the	speed	is	zero).	The	object	then
speeds	up	in	the	other	direction.	How	did	I	know	the	object’s	velocity	changed
direction?	The	position	was	at	first	approaching	the	origin,	but	then	was	getting
farther	away	from	the	origin.



The	second	graph	is	a	velocity–time	graph,	and	it	must	be	analyzed
differently.	The	object	starts	from	rest,	but	speeds	up;	the	second	part	of	the
motion	is	just	like	the	example	shown	before,	in	which	the	object	slows	to	a	brief
stop,	turns	around,	and	speeds	up.

Air	Resistance	and	the	First-Order	Differential
Equation
The	force	of	air	resistance	is	usually	negligible	in	kinematics	problems.	You
probably	don’t	believe	me,	though.	After	all,	unless	you’re	on	the	moon,	or
unless	your	teacher	is	using	a	vacuum	chamber	for	demonstrations,	air	is	all
around	us.	And	if	I	dropped	a	piece	of	paper	simultaneously	and	from	the	same
height	as	a	lead	weight,	the	weight	would	hit	the	ground	first—and	by	a	huge
margin.	Certainly.	Obviously.

Why	don’t	you	try	it?	But	be	sure	you	crinkle	up	the	paper	first	and	drop	it
from	about	waist	height.	Notice	how	the	lead	weight	hits	the	ground	WAY	before
…

Oops.
The	weight	and	the	paper	hit	the	ground	essentially	at	the	same	time.	If	the

weight	did	hit	first,	the	difference	wasn’t	anything	you	could	reliably	time	or
even	be	sure	enough	to	gamble	on.

Conclusion:	As	long	as	we’re	not	throwing	objects	out	of	our	car	on	the
freeway,	air	resistance	is	not	important	in	kinematics.

The	most	common	questions	asked:

When	is	air	resistance	important?	And	how	should	it	be	dealt	with?
Air	resistance	should	only	be	considered	when	the	problem	explicitly	says	so.
Usually,	a	problem	will	suggest	that	the	force	of	air	acts	opposite	to	an	object’s
velocity,	and	is	equal	to	a	constant	times	the	velocity:	F	air	=	bv	.	7

1.			Find	the	terminal	speed.	Terminal	speed	means	that,	after	a	long	time,	the



object’s	speed	becomes	constant.	To	find	that	terminal	speed,	do	an
equilibrium	problem:	Free	body,	set	up	forces	equal	down	forces,	and	left
forces	equal	right	forces.	If	something’s	falling	straight	down	with	no	other
forces,	usually	you’ll	get	bv	=	mg	.	Then	solve	for	v	.	That’s	the	terminal
speed.

2.			Sketch	a	graph	of	the	speed	of	the	object	as	a	function	of	time.	Perhaps
the	problem	will	say	the	object	was	dropped	from	rest,	or	give	an	initial
velocity.	Well,	you	can	plot	that	point	at	time	t	=	0.	Then	you	can	find	the
terminal	velocity	using	the	method	above—the	terminal	speed	is	the	constant
velocity	after	a	long	time.	Plot	a	horizontal	line	for	the	terminal	velocity	near
the	right-hand	side	of	the	t	-axis.

In	between	the	initial	velocity	and	the	terminal	velocity,	just	know	that
the	velocity	function	will	look	like	an	exponential	function,	changing	rapidly
at	first,	and	changing	less	rapidly	as	time	goes	on.	Sketch	a	curve	in	between
the	point	and	the	line	you	drew.	Done.

3.			Describe	the	motion	in	words,	including	what’s	happening	to	the
acceleration	and/or	the	velocity.	Be	sure	to	use	a	free-body	diagram,	and	to
separate	the	motion	if	necessary	into	parts	when	the	object	is	moving	up,	and
moving	down.	When	the	speed	is	zero,	the	force	of	air	resistance	is	zero.
This	doesn’t	mean	no	acceleration,	of	course.	When	the	speed	is	not	zero,
use	a	free	body	to	figure	out	the	amount	and	direction	of	the	net	force.
Remind	yourself	of	the	basics	of	kinematics—the	net	force	is	the	direction	of
acceleration.	If	the	acceleration	is	in	the	direction	of	motion,	the	object
speeds	up;	if	the	acceleration	is	opposite	motion,	the	object	slows	down.

4.			Solve	a	differential	equation	to	find	an	expression	for	the	velocity	as	a
function	of	time.	Again,	start	with	a	free-body	diagram,	and	write	F	net	=	ma

.	Now,	though,	you’ll	need	to	do	some	calculus:	acceleration	 	.

Perhaps	your	Newton’s	second	law	equation	might	say	something	like	mg	–
bv	=	ma	.

Okay,	solve	for	a	and	write	the	calculus	expression	for	 	.

This	type	of	equation	is	called	a	differential	equation,	where	a	derivative	of	a
function	is	proportional	to	the	function	itself.	Specifically,	since	the	first
derivative	is	involved,	this	is	called	a	“first	order”	differential	equation.

Your	calculus	class	may	well	have	taught	you	how	to	solve	this	equation
by	a	technique	known	as	separation	of	variables:	put	all	the	v	terms	on	one
side,	the	t	terms	on	the	other,	and	integrate.	If	you	know	how	to	do	that,



great;	if	not,	it’s	complex	enough	not	in	any	way	to	be	worth	learning	in
order	to	possibly—possibly	—earn	yourself	one	or	two	points.	Everyone,
though,	should	be	able	to	recognize	and	write	the	answer	using	the
knowledge	that	the	solution	to	a	first-order	differential	equation	will
involve	an	exponential	function	.	You	can	use	facts	about	the	initial
velocity	and	the	terminal	velocity	to	write	this	function	without	an
algorithmic	solution.

Imagine	that	a	ball	was	dropped	from	rest	in	the	presence	of	air	resistance	F
air	=	bv	.	Writing	the	second	law	gives	you	the	equation	shown	above.	What’s	the
solution?	Well,	the	initial	velocity	is	zero;	the	terminal	velocity	can	be	found	by
setting	acceleration	to	zero,	meaning	 	.	The	answer	will	always	be

something	like	v	(t	)	=	Ae	–	kt	or	v	(t	)	=	A	(1	−	e	−	kt	).	Start	by	figuring	out
which:	does	the	speed	start	large,	and	get	small?	If	so,	use	the	first	expression.
Or,	does	the	speed	start	small,	and	get	larger?	If	so,	use	the	second	expression.	In
this	case,	the	speed	starts	from	zero	and	ends	up	faster.	So	we	use	v	(t	)	=	A	(1	−
e	−	kt	).	Generally,	the	k	term	is	going	to	be	whatever’s	multiplying	the	v	in	the
original	equation.	In	this	case,	then,	k	=	b/m	.

Now,	look	at	the	initial	and	final	conditions	to	find	the	value	of	A	.	At	time	t
=	0,	v	=	0;	that	works	no	matter	the	value	of	A	,	because	e	0	=	1.	But	after	a	long
time,	we	know	the	terminal	velocity	is	mg	/b	.	And	in	the	equation,	e	−kt	goes	to
zero	for	large	t	.	Meaning:	after	a	long	time,	the	velocity	function	equals	A	.	This
A	must	be	the	terminal	velocity!

So	our	final	equation	looks	like:	 	.

	Practice	Problems

Multiple	Choice:
1	.	A	firework	is	shot	straight	up	in	the	air	with	an	initial	speed	of	50	m/s.	What
is	the	maximum	height	it	reaches?



(A)	12.5	m
(B)	25	m
(C)	125	m
(D)	250	m
(E)	1250	m

2	.	On	a	strange,	airless	planet,	a	ball	is	thrown	downward	from	a	height	of	17
m.	The	ball	initially	travels	at	15	m/s.	If	the	ball	hits	the	ground	in	1	s,	what	is
this	planet’s	gravitational	acceleration?

(A)	2	m/s2

(B)	4	m/s2

(C)	6	m/s2

(D)	8	m/s2

(E)	10	m/s2

3	.	An	object	moves	such	that	its	position	is	given	by	the	function	x	(t	)	=	3t	2	−
4t	+	1.	The	units	of	t	are	seconds,	and	the	units	of	x	are	meters.	After	6	s,	how
fast	and	in	what	direction	is	this	object	moving?

(A)	32	m/s	in	the	original	direction	of	motion
(B)	16	m/s	in	the	original	direction	of	motion
(C)	0	m/s
(D)	16	m/s	opposite	the	original	direction	of	motion
(E)	32	m/s	opposite	the	original	direction	of	motion

Free	Response:
4	.	An	airplane	attempts	to	drop	a	bomb	on	a	target.	When	the	bomb	is	released,
the	plane	is	flying	upward	at	an	angle	of	30°	above	the	horizontal	at	a	speed
of	200	m/s,	as	shown	below.	At	the	point	of	release,	the	plane’s	altitude	is	2.0
km.	The	bomb	hits	the	target.



(a)	Determine	the	magnitude	and	direction	of	the	vertical	component	of	the
bomb’s	velocity	at	the	point	of	release.

(b)	Determine	the	magnitude	and	direction	of	the	horizontal	component	of	the
bomb’s	velocity	at	the	point	when	the	bomb	contacts	the	target.

(c)	Determine	how	much	time	it	takes	for	the	bomb	to	hit	the	target	after	it	is
released.

(d)	At	the	point	of	release,	what	angle	below	the	horizontal	does	the	pilot
have	to	look	in	order	to	see	the	target?

	Solutions	to	Practice	Problems
1	.	Call	“up”	the	positive	direction,	and	set	up	a	chart.	We	know	that	v	f	=	0
because,	at	its	maximum	height,	the	firework	stops	for	an	instant.

Solve	for	Δx	using	equation	***:	 	.	The	answer	is	(C)	125	m,
or	about	skyscraper	height.

2	.	Call	“down”	positive,	and	set	up	a	chart:



Plug	straight	into	**	(Δx	=	v	0	t	+	1	/2	at	2	)	and	you	have	the	answer.	This	is
NOT	a	quadratic,	because	this	time	t	is	a	known	quantity.	The	answer	is	(B)
4	m/s2	,	less	than	half	of	Earth’s	gravitational	field,	but	close	to	Mars’s
gravitational	field.

3	.	First	find	the	velocity	function	by	taking	the	derivative	of	the	position
function:	v	(t	)	=	6t	−	4.	Now	plug	in	t	=	6	to	get	the	velocity	after	6	s;	you	get
32	m/s.	Note	that	this	velocity	is	positive.	Was	the	object	originally	moving	in
the	positive	direction?	Plug	in	t	=	0	to	the	velocity	formula	to	find	out	…	you
find	the	initial	velocity	to	be	−4	m/s,	so	the	object	was	originally	moving	in
the	negative	direction,	and	has	reversed	direction	after	6	s.	The	answer	is	(E).

4	.	(a)	Because	the	angle	30°	is	measured	to	the	horizontal,	the	magnitude	of	the
vertical	component	of	the	velocity	vector	is	just	(200	m/s)	(sin	30°),	which	is
100	m/s.	The	direction	is	“up,”	because	the	plane	is	flying	up.

(b)	The	horizontal	velocity	of	a	projectile	is	constant.	Thus,	the	horizontal
velocity	when	the	bomb	hits	the	target	is	the	same	as	the	horizontal
velocity	at	release,	or	(200	m/s)(cos	30°)	=	170	m/s,	to	the	right.

(c)	Let’s	call	“up”	the	positive	direction.	We	can	solve	this	projectile	motion
problem	by	our	table	method.



Don’t	forget	to	convert	to	meters,	and	be	careful	about	directions	in	the
vertical	chart.
			The	horizontal	chart	cannot	be	solved	for	time;	however,	the	vertical
chart	can.	Though	you	could	use	the	quadratic	formula	or	your	fancy
calculator	to	solve	x	−	x	0	=	v	0	t	+	1	/2	at	2	,	it’s	much	easier	to	start	with
***,	v	f	2	=	v	0	2	+	2a	(x	−	x	0	),	to	find	that	vf	vertically	is	−220	m/s	(this
velocity	must	have	a	negative	sign	because	the	bomb	is	moving	down
when	it	hits	the	ground).	Then,	plug	in	to	*(v	f	=	v	0	+	at	)	to	find	that	the
bomb	took	32	s	to	hit	the	ground.

(d)	Start	by	finding	how	far	the	bomb	went	horizontally.	Because	horizontal
velocity	is	constant,	we	can	say	distance	=	velocity	×	time.	Plugging	in
values	from	the	table,	distance	=	(170	m/s)(32	s)	=	5400	m.	Okay,	now
look	at	a	triangle:

By	geometry,	tan	θ	=	2000	m/5400	m.	The	pilot	has	to	look	down	at	an
angle	of	20°.

	Rapid	Review
•			Average	speed	is	total	distance	divided	by	total	time.	Instantaneous	speed	is
your	speed	at	a	particular	moment.

•			Velocity	is	the	vector	equivalent	of	speed.

•			Acceleration	is	a	change	in	velocity	divided	by	the	time	during	which	that
change	occurred.

•			Displacement	is	the	vector	equivalent	of	distance.

•			The	three	“star	equations”	are	valid	only	when	acceleration	is	constant.



•			To	solve	any	constant-acceleration	kinematics	problem,	follow	these	four
steps:
°			Write	out	a	table	containing	all	five	variables—v	0	,	v	f	,	x	−	x	0	,	a,	t	—and
fill	in	whatever	values	are	known.

°			Count	variables.	If	you	have	three	known	values,	you	can	solve	the
problem.

°			Use	the	“star	equation”	that	contains	your	known	variables.
°			Check	for	correct	units.

•			When	an	object	falls	(in	the	absence	of	air	resistance),	it	experiences	an
acceleration	of	g	,	about	10	m/s2	.	It’s	particularly	important	for	problems	that
involve	falling	objects	to	define	a	positive	direction	before	solving	the
problem.

•			An	object’s	motion	in	one	dimension	does	not	affect	its	motion	in	any	other
dimension.

•			Projectile	motion	problems	are	usually	easier	to	solve	if	you	break	the	object’s
motion	into	“horizontal”	and	“vertical”	vector	components.

•			The	slope	of	a	distance–time	graph	is	velocity.

•			The	slope	of	a	velocity–time	graph	is	acceleration.

•			The	area	under	a	velocity–time	graph	is	displacement.



1	Use	the	“star	equations,”	which	we	will	address	in	detail	momentarily.
2	When	can’t	you	use	kinematics,	you	ask?	The	most	common	situations	are	when	a	mass	is	attached	to	a

spring,	when	a	roller	coaster	travels	on	a	curvy	track,	or	when	a	charge	is	moving	in	a	non-uniform	electric
field	produced	by	other	charges.	To	approach	these	problems,	use	conservation	of	energy,	as	discussed	in
Chapter	14	.

3	The	writers	of	the	AP	exam	love	to	throw	things	off	cliffs.
4

5	Why	shouldn’t	I	say	“positive”	and	“negative,”	you	ask?	Well,	how	do	these	directions	to	the	store
sound:	“Define	north	as	positive.	Start	from	zero,	and	go	positive	20	constantly;	then	come	back	at	–20,	also
constantly.”	You’d	never	say	that!	But,	this	is	what	you’ll	sound	like	unless	you	use	common	language.

6	−10m/s2	,	if	we’re	on	Earth.
7	Occasionally	you	might	see	a	different	form,	F	air	=	bv	2	.	In	this	case,	you	might	be	asked	about	the

terminal	speed,	but	you	will	NOT	have	to	solve	a	differential	equation.



CHAPTER 	 11

Kinematics
1	.				A	cannonball	is	shot	straight	up	in	the	air	and	then	falls	back	to	Earth.	The

force	of	air	resistance	is	given	by	the	equation	Fair	=	-bv	2	.	If	air	resistance
cannot	be	neglected,	the	acceleration	of	the	cannonball	is
(A)			constant	while	traveling	upward.
(B)			increasing	while	traveling	upward.
(C)			greater	while	traveling	upward	than	while	traveling	downward.
(D)			equal	to	9.8	m/s2	while	traveling	downward.
(E)			constant	while	traveling	downward.

2	.				A	shortstop	throws	a	baseball	to	the	first	baseman.	Which	graphs	correctly
depict	the	horizontal	velocity	and	horizontal	acceleration	of	the	baseball
while	in	flight,	assuming	air	resistance	can	be	ignored?

(A)			

(B)			



(C)			

(D)			

(E)			

3	.				You	drop	a	baseball,	then	after	1.0	s,	you	drop	a	second	baseball.	Assuming
air	resistance	can	be	neglected,	which	of	the	following	statements	is	correct?
(A)			The	difference	in	velocity	between	the	two	baseballs	decreases	as	they

fall.
(B)			The	difference	in	velocity	between	the	two	baseballs	remains	constant

as	they	fall.
(C)			The	difference	in	velocity	between	the	two	baseballs	increases	as	they

fall.
(D)			The	distance	between	the	baseballs	decreases	as	they	fall.
(E)			The	distance	between	the	baseballs	stays	constant	as	they	fall.



4	.				An	object	begins	at	the	origin	and	has	a	velocity	as	shown	in	the	figure.
When	does	the	object	return	to	the	origin?
(A)			2	s
(B)			3	s
(C)			Between	3	and	4	s
(D)			4	s
(E)			The	object	never	returns	to	the	origin.

	Answers

1	.				C	—On	the	way	up,	the	acceleration	of	the	cannonball	is	 	.

On	the	way	down,	the	acceleration	is	 	.	Therefore,	the

acceleration	on	the	way	up	is	larger	in	magnitude	because	both	gravity	and
drag	are	acting	in	the	same	direction.	The	acceleration	is	not	constant,	as	the
velocity	changes	during	the	cannonball’s	flight.	The	velocity	decreases	on
the	upward	journey,	so	the	acceleration	will	also	decrease	in	magnitude.
Finally,	the	acceleration	is	only	g	when	the	velocity	is	zero	at	the	very	top	of
the	flight.

2	.				A	—The	horizontal	velocity	is	constant,	and	there	is	no	horizontal
acceleration	in	the	absence	of	air	resistance.

3	.				B	—Both	balls	start	from	rest	and	pick	up	speed	at	the	same	constant	rate	of



g	=	9.8	m/s2	.	The	first	ball	simply	starts	1.0	s	ahead	of	the	second	ball	and
will	remain	a	constant	9.8	m/s	ahead.	Since	the	first	ball	is	always	9.8	m/s
faster	than	the	second,	the	distance	between	the	balls	will	always	increase	as
they	fall.

4	.				C	—The	displacement	of	the	object	is	given	by	the	area	of	the	graph.	The
positive	area	from	0	to	2	s	is	3	m.	The	negative	area	from	2	to	3	s	is	1	m,
which	is	not	enough	to	return	to	the	origin.	The	negative	area	from	2	to	4	s	is
4	m,	which	is	too	large.	Therefore,	the	object	will	pass	through	the	origin
between	3	and	4	s	as	it	travels	in	the	negative	direction.



CHAPTER 	 12

Newton’s	Second	Law,	Fnet	=	ma

IN	THIS	CHAPTER

Summary:	Chapter	10	explained	how	to	deal	with	objects	in	equilibrium,	that	is,	with	zero	acceleration.
The	same	problem-solving	process	can	be	used	with	accelerating	objects.

Key	Ideas
		Only	a	NET	force,	not	an	individual	force,	can	be	set	equal	to	ma	.
		Use	a	free-body	diagram	and	the	four-step	problem-solving	process	when	a
problem	involves	forces.
		When	two	masses	are	connected	by	a	rope,	the	rope	has	the	same	tension
throughout.	(One	rope	=	one	tension.)	1
		Newton’s	third	law:	force	pairs	must	act	on	different	objects.

Relevant	Equations
Um,	the	chapter	title	says	it	all	…

What	this	means	is	that	the	net	force	acting	on	an	object	is	equal	to	the	mass	of
that	object	multiplied	by	the	object’s	acceleration	.	And	that	statement	will	help



you	with	all	sorts	of	problems.

The	Four-Step	Problem-Solving	Process
If	you	decide	that	the	best	way	to	approach	a	problem	is	to	use	F	net	=	ma	,	then
you	should	solve	the	problem	by	following	these	four	steps.

1.				Draw	a	proper	free-body	diagram.
2.				Resolve	vectors	into	their	components.
3.				For	each	axis,	set	up	an	expression	for	F	net	,	and	set	it	equal	to	ma	.
4.				Solve	your	system	of	equations.

Note	the	marked	similarity	of	this	method	to	that	discussed	in	the	chapter	on
equilibrium.

Following	these	steps	will	get	you	majority	credit	on	an	AP	free-response
problem	even	if	you	do	not	ultimately	get	the	correct	answer.	In	fact,	even	if	you
only	get	through	the	first	one	or	two	steps,	it	is	likely	that	you	will	still	get	some
credit.

Only	Net	Force	Equals	ma

THIS	IS	REALLY	IMPORTANT.	Only	F	net	can	be	set	equal	to	ma	.	You
cannot	set	any	old	force	equal	to	ma	.	For	example,	let’s	say	that	you	have	a
block	of	mass	m	sitting	on	a	table.	The	force	of	gravity,	mg	,	acts	down	on	the
block.	But	that	does	not	mean	that	you	can	say,	“F	=	mg	,	so	the	acceleration	of
the	block	is	g	,	or	about	10	m/s2	.”	Because	we	know	that	the	block	isn’t	falling!
Instead,	we	know	that	the	table	exerts	a	normal	force	on	the	block	that	is	equal	in
magnitude	but	opposite	in	direction	to	the	force	exerted	by	gravity.	So	the	NET



force	acting	on	the	block	is	0.	You	can	say	“F	net	=	0,	so	the	block	is	not
accelerating.”

A	Simple	Example

A	block	of	mass	m	=	2	kg	is	pushed	along	a	frictionless	surface.	The	force
pushing	the	block	has	a	magnitude	of	5	N	and	is	directed	at	θ	=	30°	below	the
horizontal.	What	is	the	block’s	acceleration?

We	follow	our	four-step	process.	First,	draw	a	proper	free-body	diagram.

Second,	we	break	the	F	push	vector	into	components	that	line	up	with	the
horizontal	and	vertical	axes.



We	can	now	move	on	to	Step	3	,	writing	equations	for	the	net	force	in	each
direction:

Now	we	can	plug	in	our	known	values	into	these	equations	and	solve	for	the
acceleration	of	the	block.	First,	we	solve	for	the	right–left	direction:

Next,	we	solve	for	the	up–down	direction.	Notice	that	the	block	is	in	equilibrium
in	this	direction—it	is	neither	flying	off	the	table	nor	being	pushed	through	it—
so	we	know	that	the	net	force	in	this	direction	must	equal	0.

So	the	acceleration	of	the	block	is	simply	2.2	m/s2	to	the	right.

F	net	on	Inclines

A	block	of	mass	m	is	placed	on	a	plane	inclined	at	an	angle	θ	.	The	coefficient
of	friction	between	the	block	and	the	plane	is	μ	.	What	is	the	acceleration	of
the	block	down	the	plane?



This	is	a	really	boring	problem.	But	it’s	also	a	really	common	problem,	so	it’s
worth	looking	at.	2

Note	that	no	numbers	are	given,	just	variables.	That’s	okay.	It	just	means	that
our	answer	should	be	in	variables.	Only	the	given	variables—in	this	case	m,	θ	,
and	m	—and	constants	such	as	g	can	be	used	in	the	solution.	And	you	shouldn’t
plug	in	any	numbers	(such	as	10	m/s2	for	g	),	even	if	you	know	them.

Step	1	:	Free-body	diagram.

Step	2	:	Break	vectors	into	components.



If	you	don’t	know	where	we	got	those	vector	components,	refer	back	to	Chapter
9	.

Step	3	:	Write	equations	for	the	net	force	in	each	direction.
Note	that	the	block	is	in	equilibrium	in	the	direction	perpendicular	to	the	plane,
so	the	equation	for	F	net,	perpendicular	(but	not	the	equation	for	F	net,	down	the	plane	)
can	be	set	equal	to	0.

Step	4	:	Solve.
We	can	rewrite	F	f	,	because

Ff	=	μFN	=	μ	mg	(cos	θ	)

Plugging	this	expression	for	F	f	into	the	“F	net,	down	the	plane	”	equation,	we	have

It	always	pays	to	check	the	reasonability	of	the	answer.	First,	the	answer	doesn’t
include	any	variables	that	weren’t	given.	Next,	the	units	work	out:	g	has
acceleration	units;	neither	the	sine	or	cosine	of	an	angle	nor	the	coefficient	of
friction	has	any	units.

Second,	compare	the	answer	to	something	familiar.	Note	that	if	the	plane
were	vertical,	θ	=	90°,	so	the	acceleration	would	be	g	—yes,	the	block	would



then	be	in	free	fall!	Also,	note	that	friction	tends	to	make	the	acceleration
smaller,	as	you	might	expect.

For	this	particular	incline,	what	coefficient	of	friction	would	cause	the	block	to
slide	with	constant	speed?

Constant	speed	means	a	=	0.	The	solution	for	FN	in	the	perpendicular	direction	is
the	same	as	before:	F	N	=	mg	(cosθ	).	But	in	the	down-the-plane	direction,	no
acceleration	means	that	F	f	=	mg	(sinθ	).	Because	μ	=	F	f	/F	N	,

Canceling	terms	and	remembering	that	sin/cos	=	tan,	you	find	that	μ	=	tanθ	when
acceleration	is	zero.

You	might	note	that	neither	this	answer	nor	the	previous	one	includes	the
mass	of	the	block,	so	on	the	same	plane,	both	heavy	and	light	masses	move	the
same	way!

F	net	for	a	Pulley

Before	we	present	our	next	practice	problem,	a	few	words	about	tension	and
pulleys	are	in	order.	Tension	in	a	rope	is	the	same	everywhere	in	the	rope,	even	if
the	rope	changes	direction	(such	as	when	it	goes	around	a	pulley)	or	if	the
tension	acts	in	different	directions	on	different	objects.	ONE	ROPE	=	ONE
TENSION.	If	there	are	multiple	ropes	in	a	problem,	each	rope	will	have	its	own
tension.	TWO	ROPES	=	TWO	TENSIONS.	3

When	masses	are	attached	to	a	pulley,	the	pulley	can	only	rotate	one	of	two
ways.	Call	one	way	positive,	the	other,	negative.

A	block	of	mass	M	and	a	block	of	mass	m	are	connected	by	a	thin	string	that



passes	over	a	light	frictionless	pulley.	Find	the	acceleration	of	the	system.

We	arbitrarily	call	counterclockwise	rotation	of	the	pulley	“positive.”

Step	1	:	Free-body	diagrams.

The	tension	T	is	the	same	for	each	block—ONE	ROPE	=	ONE	TENSION.	Also,
note	that	because	the	blocks	are	connected,	they	will	have	the	same	acceleration,
which	we	call	a	.

Step	2	:	Components.
The	vectors	already	line	up	with	one	another.	On	to	Step	3	.

Step	3	:	Equations.

Notice	how	we	have	been	careful	to	adhere	to	our	convention	of	which	forces	act
in	the	positive	and	negative	directions.



Step	4	:	Solve.
Let’s	solve	for	T	using	the	first	equation:

T	=	Mg	−	Ma	.

Plugging	this	value	for	T	into	the	second	equation,	we	have

(Mg	−	Ma	)	−	mg	=	ma

Our	answer	is

A	2-kg	block	and	a	5-kg	block	are	connected	as	shown	on	a	frictionless
surface.	Find	the	tension	in	the	rope	connecting	the	two	blocks.	Ignore	any
friction	effects.

Why	don’t	you	work	this	one	out	for	yourself?	We	have	included	our	solution	on
the	following	page.

Solution	to	Example	Problem
Step	1	:	Free-body	diagrams.



Step	2	:	Components.
Again,	our	vectors	line	up	nicely,	so	on	to	Step	3	.

Step	3	:	Equations.
Before	we	write	any	equations,	we	must	be	careful	about	signs:	we	shall	call
counterclockwise	rotation	of	the	pulley	“positive.”

For	the	more	massive	block,	we	know	that,	because	it	is	not	flying	off	the
table	or	tunneling	into	it,	it	is	in	equilibrium	in	the	up–down	direction.	But	it	is
not	in	equilibrium	in	the	right–left	direction.

For	the	less	massive	block,	we	only	have	one	direction	to	concern	ourselves
with:	the	up–down	direction.

F	net	=	T	−	mg	=	ma

We	can	solve	for	T	from	the	“F	net,	x	”	equation	for	the	more	massive	block	and
plug	that	value	into	the	“F	net	”	equation	for	the	less	massive	block,	giving	us

(−Ma	)	−	mg	=	ma

We	rearrange	some	terms	to	get

Now	we	plug	in	the	known	values	for	M	and	m	to	find	that



To	finish	the	problem,	we	plug	in	this	value	for	a	into	the	“F	net,	x	”	equation	for
the	more	massive	block.

More	Thoughts	on	F	net	=	ma
The	four	example	problems	in	this	chapter	were	all	solved	using	only	F	net	=	ma
.	Problems	you	might	face	in	the	real	world—that	is,	on	the	AP	test—will	not
always	be	so	straightforward.	Here’s	an	example:	imagine	that	this	last	example
problem	asked	you	to	find	the	speed	of	the	blocks	after	2	seconds	had	elapsed,
assuming	that	the	blocks	were	released	from	rest.	That’s	a	kinematics	problem,
but	to	solve	it,	you	have	to	know	the	acceleration	of	the	blocks.	You	would	first
have	to	use	F	net	=	ma	to	find	the	acceleration,	and	then	you	could	use	a
kinematics	equation	to	find	the	final	speed.	We	suggest	that	you	try	to	solve	this
problem:	it’s	good	practice.

Also,	remember	in	Chapter	12	when	we	introduced	the	unit	of	force,	the
newton,	and	we	said	that	1	N	=	1	kg·m/s2	?	Well,	now	you	know	why	that
conversion	works:	the	units	of	force	must	be	equal	to	the	units	of	mass
multiplied	by	the	units	of	acceleration.

Exam	tip	from	an	AP	Physics	veteran:
Newton’s	second	law	works	for	all	kinds	of	forces,	not	just	tensions,	friction,
and	such.	Often	what	looks	like	a	complicated	problem	with	electricity	or
magnetism	is	really	just	an	F	net	=	ma	problem,	but	the	forces	might	be	electric
or	magnetic	in	nature.

—Jonas,	high	school	senior

Newton’s	Third	Law
We’re	sure	you’ve	been	able	to	quote	the	third	law	since	birth,	or	at	least	since
5th	grade:	“Forces	come	in	equal	and	opposite	action-reaction	pairs,”	also



known	as	“For	every	action	there	is	an	equal	and	opposite	reaction.”	If	I	push
down	on	the	Earth,	the	Earth	pushes	up	on	me;	a	football	player	who	makes	a
tackle	experiences	the	same	force	that	he	dishes	out.

What’s	so	hard	about	that?	Well,	ask	yourself	one	of	the	most	important
conceptual	questions	in	first-year	physics:	“If	all	forces	cause	reaction	forces,
then	how	can	anything	ever	accelerate?”	Pull	a	little	lab	cart	horizontally	across
the	table	…	you	pull	on	the	cart,	the	cart	pulls	on	you,	so	don’t	these	forces
cancel	out,	prohibiting	acceleration?

Well,	obviously,	things	can	move.	The	trick	is,	Newton’s	third	law	force
pairs	must	act	on	different	objects	,	and	so	can	never	cancel	each	other.

When	writing	F	net	=	ma	,	only	consider	the	forces	acting	on	the	object	in
question.	Do	not	include	forces	exerted	by	the	object.

Consider	the	lab	cart.	The	only	horizontal	force	that	it	experiences	is	the	force	of
your	pull.	So,	it	accelerates	toward	you.	Now,	you	experience	a	force	from	the
cart,	but	you	also	experience	a	whole	bunch	of	other	forces	that	keep	you	in
equilibrium;	thus,	you	don’t	go	flying	into	the	cart.

This	Chapter	Was	Not	as	Easy	as	You	Thought

Be	careful	with	this	chapter.	Most	Physics	C	students	say,	“Oh,	come	on,	this
stuff	is	easy	…	let’s	move	on	to	something	challenging.”	Okay,	you’re	right—if
you’re	at	the	level	you	need	to	be	for	Physics	C,	basic	Newton’s	second	law
problems	need	to	be	easy	for	you.	What	you	must	remember	from	this	and	the
equilibrium	chapter	is	the	absolute	necessity	of	free-body	diagrams.

No	matter	how	easy	or	hard	an	F	net	problem	may	seem,	you	must	start	the
problem	with	a	free-body	diagram.	Points	are	awarded	for	the	free-body



diagram,	and	that	diagram	will	ensure	that	you	don’t	make	minor	mistakes	on
the	rest	of	the	problem.	My	own	Physics	C	students	frequently	mess	up	on	what
should	be	straightforward	problems	when	they	try	to	take	shortcuts.	If	you	draw
the	FBD	and	follow	the	four-step	problem-solving	procedure,	it’s	hard	to	go
wrong.	Even	professional	physicists	use	free-body	diagrams.	You	must,	too.

	Practice	Problems

Multiple	Choice:
1	.	A	2.0-kg	cart	is	given	a	shove	up	a	long,	smooth	30°	incline.	If	the	cart	is
traveling	8.0	m/s	after	the	shove,	how	much	time	elapses	until	the	cart	returns
to	its	initial	position?

(A)	1.6	s
(B)	3.2	s
(C)	4.0	s
(D)	6.0	s
(E)	8.0	s

2	.	A	car	slides	up	a	frictionless	inclined	plane.	How	does	the	normal	force	of
the	incline	on	the	car	compare	with	the	weight	of	the	car?

(A)	The	normal	force	must	be	equal	to	the	car’s	weight.
(B)	The	normal	force	must	be	less	than	the	car’s	weight.
(C)	The	normal	force	must	be	greater	than	the	car’s	weight.
(D)	The	normal	force	must	be	zero.
(E)	The	normal	force	could	have	any	value	relative	to	the	car’s	weight.

3	.	In	the	diagram	above,	a	1.0-kg	cart	and	a	2.0-kg	cart	are	connected	by	a
rope.	The	spring	scale	reads	10	N.	What	is	the	tension	in	the	rope	connecting
the	two	carts?	Neglect	any	friction.

(A)	30	N
(B)	10	N
(C)	6.7	N
(D)	5.0	N



(E)	3.3	N

4	.	The	velocity–time	graph	above	represents	the	motion	of	a	5-kg	box.	The
only	force	applied	to	this	box	is	a	person	pushing.	Assuming	that	the	box	is
moving	to	the	right,	what	is	the	magnitude	and	direction	of	the	force	applied
by	the	person	pushing?

(A)	2.0	N,	right
(B)	2.0	N,	left
(C)	0.4	N,	right
(D)	0.4	N,	left
(E)	12.5	N,	left

Free	Response:

5	.	A	2-kg	block	and	a	5-kg	block	are	connected	as	shown	above.	The
coefficient	of	friction	between	the	5-kg	block	and	the	flat	surface	is	θ	=	0.2.



(A)	Calculate	the	magnitude	of	the	acceleration	of	the	5-kg	block.
(B)	Calculate	the	tension	in	the	rope	connecting	the	two	blocks.

6	.	Bert,	Ernie,	and	Oscar	are	discussing	the	gas	mileage	of	cars.	Specifically,
they	are	wondering	whether	a	car	gets	better	mileage	on	a	city	street	or	on	a
freeway.	All	agree	(correctly)	that	the	gas	mileage	of	a	car	depends	on	the
force	that	is	produced	by	the	car’s	engine—the	car	gets	fewer	miles	per	gallon
if	the	engine	must	produce	more	force.	Whose	explanation	is	completely
correct?

Bert	says:	Gas	mileage	is	better	on	the	freeway.	In	town	the	car	is	always
speeding	up	and	slowing	down	because	of	the	traffic	lights,	so	because	F	net
=	ma	and	acceleration	is	large,	the	engine	must	produce	a	lot	of	force.
However,	on	the	freeway,	the	car	moves	with	constant	velocity,	and
acceleration	is	zero.	So	the	engine	produces	no	force,	allowing	for	better	gas
mileage.
Ernie	says:	Gas	mileage	is	better	in	town.	In	town,	the	speed	of	the	car	is
slower	than	the	speed	on	the	freeway.	Acceleration	is	velocity	divided	by
time,	so	the	acceleration	in	town	is	smaller.	Because	F	net	=	ma	,	then,	the
force	of	the	engine	is	smaller	in	town	giving	better	gas	mileage.
Oscar	says:	Gas	mileage	is	better	on	the	freeway.	The	force	of	the	engine
only	has	to	be	enough	to	equal	the	force	of	air	resistance—the	engine	doesn’t
have	to	accelerate	the	car	because	the	car	maintains	a	constant	speed.
Whereas	in	town,	the	force	of	the	engine	must	often	be	greater	than	the	force
of	friction	and	air	resistance	in	order	to	let	the	car	speed	up.

	Solutions	to	Practice	Problems
1	.	B—	“Smooth”	usually	means,	“ignore	friction.”	So	the	only	force	acting
along	the	plane	is	a	component	of	gravity,	mg	(sin	30°).	The	F	net	equation
becomes	mg	(sin	30°)	−	0	=	ma	.	The	mass	cancels,	leaving	the	acceleration
as	5	m/s2	.	What’s	left	is	a	kinematics	problem.	Set	up	a	chart,	calling	the
direction	down	the	plane	as	positive:



Use	**	(Δx	=	v	0	t	+	1	/2	at	2	)	to	find	that	the	time	is	3.2	s.
2	.	B—	The	normal	force	exerted	on	an	object	on	an	inclined	plane	equals	mg
(cos	θ	),	where	θ	is	the	angle	of	the	incline.	If	θ	is	greater	than	0,	then	cos	θ	is
less	than	1,	so	the	normal	force	is	less	than	the	object’s	weight.

3	.	E—	Consider	the	forces	acting	on	each	block	separately.	On	the	1.0-kg
block,	only	the	tension	acts,	so	T	=	(1.0	kg)a	.	On	the	2.0-kg	block,	the
tension	acts	left,	but	the	10	N	force	acts	right,	so	10	N	−	T	=	(2.0	kg)a	.	Add
these	equations	together	(noting	that	the	tension	in	the	rope	is	the	same	in
both	equations),	getting	10	N	=	(3.0	kg	)a	;	acceleration	is	3.3	m/s2	.	To	finish,
T	=	(1.0	kg)a	,	so	tension	is	3.3	N.

4	.	B—	The	acceleration	is	given	by	the	slope	of	the	v	–t	graph,	which	has
magnitude	0.4	m/s2	.	F	net	=	ma	,	so	5	kg	×	0.4	m/s2	=	2.0	N.	This	force	is	to
the	left	because	acceleration	is	negative	(the	slope	is	negative),	and	negative
was	defined	as	left.

5	.	The	setup	is	the	same	as	in	the	chapter’s	example	problem,	except	this	time
there	is	a	force	of	friction	acting	to	the	left	on	the	5-kg	block.	Because	this
block	is	in	equilibrium	vertically,	the	normal	force	is	equal	to	the	block’s
weight,	50	N.	The	friction	force	is	μF	N	,	or	10	N.

Calling	the	down-and-right	direction	positive,	we	can	write	two	equations,
one	for	each	block:

(A)	To	solve	for	acceleration,	just	add	the	two	equations	together.	The
tensions	cancel.	We	find	the	acceleration	to	be	1.4	m/s2	.



(B)	Plug	back	into	either	equation	to	find	the	final	answer,	that	the	tension	is
17	N.	This	is	more	than	the	14	N	we	found	for	the	frictionless	situation,
and	so	makes	sense.	We	expect	that	it	will	take	more	force	in	the	rope	to
overcome	friction	on	the	table.

6	.	Although	Bert	is	right	that	acceleration	is	zero	on	the	freeway,	this	means
that	the	NET	force	is	zero;	the	engine	still	must	produce	a	force	to	counteract
air	resistance.	This	is	what	Oscar	says,	so	his	answer	is	correct.	Ernie’s
answer	is	way	off—acceleration	is	not	velocity/time,	acceleration	is	a
CHANGE	in	velocity	over	time.

	Rapid	Review
•			The	net	force	on	an	object	equals	the	mass	of	the	object	multiplied	by	the
object’s	acceleration.

•			To	solve	a	problem	using	F	net	=	ma	,	start	by	drawing	a	good	free-body
diagram.	Resolve	forces	into	vector	components.	For	each	axis,	the	vector
sum	of	forces	along	that	axis	equals	ma	i	,	where	a	i	is	the	acceleration	of	the
object	along	that	axis.

•			When	an	object	is	on	an	inclined	plane,	resolve	its	weight	into	vector
components	that	point	parallel	and	perpendicular	to	the	plane.

•			For	problems	that	involve	a	massless	pulley,	remember	that	if	there’s	one
rope,	there’s	one	tension.



1	But	if	the	rope	is	attached	across	a	massive	pulley,	the	tension	is	different	on	each	side	of	the	pulley.
See	Chapter	16	.

2	If	you	want	to	make	this	problem	more	interesting,	just	replace	the	word	“block”	with	the	phrase
“maniacal	tobogganist”	and	the	word	“plane”	with	the	phrase	“highway	on-ramp.”

3	Except	for	the	physics	C	corollary,	when	the	pulley	is	massive—this	situation	is	discussed	in	Chapter
16	.



CHAPTER 	 12

Forces

1	.				A	light	string	holds	three	identical	masses	over	a	lightweight	pulley	as
shown	in	the	figure.	When	the	masses	are	released,	the	acceleration	of	the
masses	will	be
(A)			2g
(B)			g
(C)			2g/3
(D)			g/2
(E)			g/3



2	.				While	removing	paint,	a	carpenter	accelerates	a	rough	sanding	block	up	a
wall	as	shown.	The	coefficient	of	friction	between	the	block	and	the	wall	is
μ.	What	is	the	net	force	on	the	sanding	block?
(A)			F	+	mg	+	Ff
(B)			F	cos	θ	-	mg	-	μF	sin	θ
(C)			F	sin	θ	-	mg	-	μF	cos	θ
(D)			F	sin	θ	+	FN
(E)			F	+	mg	+	FN

3	.				The	net	force	applied	to	an	object	as	a	function	of	time	is	shown	in	the
figure.	Which	of	the	following	position-time	and	velocity-time	graphs	are
consistent	with	the	force-time	graph?

(A)			



(B)			

(C)			

(D)			

(E)			

4	.				A	force	(F	)	accelerates	three	blocks	across	a	rough	horizontal	surface	as
shown	in	the	figure.	The	coefficient	of	friction	(μ)	between	the	blocks	and
the	surface	is	the	same	for	each	block.	Which	of	the	following	statements	is
correct?

(A)			The	acceleration	of	all	the	blocks	will	be	equal	to	 	.

(B)			The	net	force	acting	on	each	block	will	be	the	same.
(C)			The	net	force	acting	on	block	m	is	the	largest.
(D)			The	net	force	acting	on	block	2m	is	the	largest.
(E)			The	net	force	acting	on	block	3m	is	the	largest.



	Answers

1	.				E	—

2	.				B	—The	horizontal	forces	acting	on	the	block	cancel	each	other	out:	Fsin
θ=FN	.	The	vertical	forces	accelerate	the	block	upward:

3	.				A	—The	net	force	is	a	constant	negative	value,	and	the	acceleration	must
also	be	constant	and	negative.	Therefore,	the	velocity-time	graph	must	have
a	negative	slope.	This	eliminates	choice	B.	Choices	C	and	D	start	with	a
velocity	of	zero,	yet	their	position-time	graphs	both	begin	with	a	positive



slope,	which	is	inconsistent.	Choice	E	ends	with	a	zero	velocity,	yet	the
position-time	graph	ends	with	a	negative	slope,	which	is	inconsistent.	This
leaves	choice	A	as	the	only	viable	graph	that	matches	the	force-time	graph.

4	.				E	—All	the	blocks	move	as	a	unit,	with	the	same	acceleration	of	 	.

Since	each	block	has	the	same	acceleration,	the	block	with	the	largest	mass
will	require	the	largest	net	force	acting	on	it	to	maintain	the	same
acceleration.



CHAPTER 	 13

Momentum

IN	THIS	CHAPTER

Summary:	The	impulse–momentum	relationship	can	explain	how	force	acts	in	a	collision.	Momentum	is
conserved	in	all	collisions,	allowing	a	prediction	of	objects’	speeds	before	and	after	a	collision.

Key	Ideas
		Impulse	can	be	expressed	both	as	force	times	a	time	interval,	and	as	a	change
in	momentum.
		The	total	momentum	of	a	set	of	objects	before	a	collision	is	equal	to	the	total
momentum	of	a	set	of	objects	after	a	collision.
		Momentum	is	a	vector,	so	leftward	momentum	can	“cancel	out”	rightward
momentum.

Relevant	Equations
The	definition	of	momentum:

p	=	mv

The	impulse–momentum	theorem:

Δp	=	F	Δt



Location	of	the	center	of	mass:

Mxcm	=	m	1	x	1	+	m	2	x	2	+	…

If	an	object	is	moving,	it	has	momentum.	The	formal	definition	of	momentum	1

is	that	it’s	equal	to	an	object’s	mass	multiplied	by	that	object’s	velocity.
However,	a	more	intuitive	way	to	think	about	momentum	is	that	it	corresponds
to	the	amount	of	“oomph”	an	object	has	in	a	collision.	Regardless	of	how	you
think	about	momentum,	the	key	is	this:	the	momentum	of	a	system	upon	which
no	net	external	force	acts	is	always	conserved.

Momentum	and	Impulse

The	units	of	momentum	are	kg·m/s,	which	is	the	same	as	N·s.	Momentum	is	a
vector	quantity,	and	it	is	often	abbreviated	with	a	p	.

Impulse	(designated	as	I	)	is	an	object’s	change	in	momentum.	It	is	also	equal	to
the	force	acting	on	an	object	multiplied	by	the	time	interval	over	which	that
force	was	applied.	The	above	equation	is	often	referred	to	as	the	“impulse–
momentum	theorem.”

The	F	Δt	definition	of	impulse	explains	why	airbags	are	used	in	cars	and
why	hitting	someone	with	a	pillow	is	less	dangerous	than	hitting	him	or	her	with
a	cement	block.	The	key	is	the	Δt	term.	An	example	will	help	illustrate	this
point.

A	man	jumps	off	the	roof	of	a	building,	3.0	m	above	the	ground.	His	mass	is
70	kg.	He	estimates	(while	in	free-fall)	that	if	he	lands	stiff-legged,	it	will	take
him	3	ms	(milliseconds)	to	come	to	rest.	However,	if	he	bends	his	knees	upon
impact,	it	will	take	him	100	ms	to	come	to	rest.	Which	way	will	he	choose	to
land,	and	why?



This	is	a	multistep	problem.	We	start	by	calculating	the	man’s	velocity	the
instant	before	he	hits	the	ground.	That’s	a	kinematics	problem,	so	we	start	by
choosing	a	positive	direction—we’ll	choose	“down”	to	be	positive—and	by
writing	out	our	table	of	variables.

We	have	three	variables	with	known	values,	so	we	can	solve	for	the	other	two.
We	don’t	care	about	time,	t	,	so	we	will	just	solve	for	vf	.

Now	we	can	solve	for	the	man’s	momentum	the	instant	before	he	hits	the
ground.

p	=	mv	=	(70)(7.7)	=	540	kg·m/s

Once	he	hits	the	ground,	the	man	quickly	comes	to	rest.	That	is,	his	momentum
changes	from	540	kg·m/s	to	0.

If	the	man	does	not	bend	his	knees,	then

The	negative	sign	in	our	answer	just	means	that	the	force	exerted	on	the	man	is
directed	in	the	negative	direction:	up.

Now,	what	if	he	had	bent	his	knees?



If	he	bends	his	knees,	he	allows	for	his	momentum	to	change	more	slowly,	and
as	a	result,	the	ground	exerts	a	lot	less	force	on	him	than	had	he	landed	stiff-
legged.	More	to	the	point,	hundreds	of	thousands	of	newtons	applied	to	a
person’s	legs	will	cause	major	damage—this	is	the	equivalent	of	almost	20	tons
sitting	on	his	legs.	So	we	would	assume	that	the	man	would	bend	his	knees	upon
landing,	reducing	the	force	on	his	legs	by	a	factor	of	30.

Calculus	Version	of	the	Impulse–Momentum	Theorem
Conceptually,	you	should	think	of	impulse	as	change	in	momentum,	also	equal
to	a	force	multiplied	by	the	time	during	which	that	force	acts.	This	is	sufficient
when	the	force	in	question	is	constant,	or	when	you	can	easily	define	an	average
force	during	a	time	interval.

But	what	about	when	a	force	is	changing	with	time?	The	relationship
between	force	and	momentum	in	the	language	of	calculus	is

A	common	AP	question,	then,	gives	momentum	of	an	object	as	a	function	of
time,	and	asks	you	to	take	the	derivative	to	find	the	force	on	the	object.

It’s	also	useful	to	understand	this	calculus	graphically.	Given	a	graph	of
momentum	vs.	time,	the	slope	of	the	tangent	to	the	graph	gives	the	force	at	that
point	in	time.	Given	a	graph	of	force	vs.	time,	the	area	under	that	graph	is
impulse,	or	change	in	momentum	during	that	time	interval.

Conservation	of	Momentum

Momentum	in	an	isolated	system,	where	no	net	external	forces	act,	is	always
conserved.	A	rough	approximation	of	a	closed	system	is	a	billiard	table	covered
with	hard	tile	instead	of	felt.	When	the	billiard	balls	collide,	they	transfer



momentum	to	one	another,	but	the	total	momentum	of	all	the	balls	remains
constant.

The	key	to	solving	conservation	of	momentum	problems	is	remembering	that
momentum	is	a	vector	.

A	satellite	floating	through	space	collides	with	a	small	UFO.	Before	the
collision,	the	satellite	was	traveling	at	10	m/s	to	the	right,	and	the	UFO	was
traveling	at	5	m/s	to	the	left.	If	the	satellite’s	mass	is	70	kg,	and	the	UFO’s
mass	is	50	kg,	and	assuming	that	the	satellite	and	the	UFO	bounce	off	each
other	upon	impact,	what	is	the	satellite’s	final	velocity	if	the	UFO	has	a	final
velocity	of	3	m/s	to	the	right?

Let’s	begin	by	drawing	a	picture.

Momentum	is	conserved,	so	we	write

The	tick	marks	on	the	right	side	of	the	equation	mean	“after	the	collision.”	We
know	the	momentum	of	each	space	traveler	before	the	collision,	and	we	know
the	UFO’s	final	momentum.	So	we	solve	for	the	satellite’s	final	velocity.	(Note
that	we	must	define	a	positive	direction;	because	the	UFO	is	moving	to	the	left,
its	velocity	is	plugged	in	as	negative.)



Now,	what	if	the	satellite	and	the	UFO	had	stuck	together	upon	colliding?	We
can	solve	for	their	final	velocity	easily:

Motion	of	the	Center	of	Mass

The	center	of	mass	of	a	system	of	objects	obeys	Newton’s	second	law.	Two
common	examples	might	illustrate	the	point:

(1)	Imagine	that	an	astronaut	on	a	spacewalk	throws	a	rope	around	a	small
asteroid,	and	then	pulls	the	asteroid	toward	him.	Where	will	the	asteroid
and	the	astronaut	collide?

Answer:	at	the	center	of	mass.	Since	no	forces	acted	except	due	to	the
astronaut	and	asteroid,	the	center	of	mass	must	have	no	acceleration.	The
center	of	mass	started	at	rest,	and	stays	at	rest,	all	the	way	until	the	objects
collide.

(2)	A	toy	rocket	is	in	projectile	motion,	so	that	it	is	on	track	to	land	30	m	from
its	launch	point.	While	in	the	air,	the	rocket	explodes	into	two	identical
pieces,	one	of	which	lands	35	m	from	the	launch	point.	Where	does	the	first
piece	land?

Answer:	25	m	from	the	launch	point.	Since	the	only	external	force	acting
on	the	rocket	is	gravity,	the	center	of	mass	must	stay	in	projectile	motion,
and	must	land	30	m	from	the	launch	point.	The	two	pieces	are	of	equal
mass,	so	if	one	is	5	m	beyond	the	center	of	mass’s	landing	point,	the	other
piece	must	be	5	m	short	of	that	point.

Finding	the	Center	of	Mass
Usually	the	location	of	the	center	of	mass	(cm)	is	pretty	obvious	…	the	formal



equation	for	the	cm	of	several	objects	is

Mxcm	=	m	1	x	1	+	m	2	x	2	+	…

Multiply	the	mass	of	each	object	by	its	position,	and	divide	by	the	total	mass	M	,
and	voila,	you	have	the	position	of	the	center	of	mass.	What	this	tells	you	is	that
the	cm	of	several	equal-mass	objects	is	right	in	between	them;	if	one	mass	is
heavier	than	the	others,	the	cm	is	closer	to	the	heavy	mass.

Very	rarely,	you	might	have	to	find	the	center	of	mass	of	a	continuous	body
(like	a	baseball	bat)	using	calculus.	The	formula	is

Do	not	use	this	equation	unless	(a)	you	have	plenty	of	extra	time	to	spend,	and
(b)	you	know	exactly	what	you’re	doing.	In	the	highly	unlikely	event	it’s
necessary	to	use	this	equation	to	find	a	center	of	mass,	you	will	usually	be	better
off	just	guessing	at	the	answer	and	moving	on	to	the	rest	of	the	problem.	(If	you
want	to	find	out	how	to	do	such	a	problem	thoroughly,	consult	your	textbook.
This	is	not	something	worth	reviewing	if	you	don’t	know	how	to	do	it	already.)

Elastic	and	Inelastic	Collisions
This	brings	us	to	a	couple	of	definitions.

If	you’re	unfamiliar	with	the	concept	of	kinetic	energy	(KE),	take	a	few	minutes
to	skim	Chapter	14	right	now.

When	the	satellite	and	the	UFO	bounced	off	each	other,	they	experienced	a
perfectly	elastic	collision.	If	kinetic	energy	is	lost	to	heat	or	anything	else	during
the	collision,	it	is	called	an	inelastic	collision.

The	extreme	case	of	an	inelastic	collision	is	called	a	perfectly	inelastic	collision.



The	second	collision	between	the	satellite	and	the	UFO	was	a	perfectly	inelastic
collision.	BUT,	MOMENTUM	IS	STILL	CONSERVED,	EVEN	IN	A
PERFECTLY	INELASTIC	COLLISION!

Two-Dimensional	Collisions
The	key	to	solving	a	two-dimensional	collision	problem	is	to	remember	that
momentum	is	a	vector,	and	as	a	vector	it	can	be	broken	into	x	and	y	components.
Momentum	in	the	x	-direction	is	always	conserved,	and	momentum	in	the	y	-
direction	is	always	conserved.

Maggie	has	decided	to	go	ice-skating.	While	cruising	along,	she	trips	on	a
crack	in	the	ice	and	goes	sliding.	She	slides	along	the	ice	at	a	velocity	of	2.5
m/s.	In	her	path	is	a	penguin.	Unable	to	avoid	the	flightless	bird,	she	collides
with	it.	The	penguin	is	initially	at	rest	and	has	a	mass	of	20	kg,	and	Maggie’s
mass	is	50	kg.	Upon	hitting	the	penguin,	Maggie	is	deflected	308	from	her
initial	path,	and	the	penguin	is	deflected	608	from	Maggie’s	initial	path.	What
is	Maggie’s	velocity,	and	what	is	the	penguin’s	velocity,	after	the	collision?

We	want	to	analyze	the	x	-component	of	momentum	and	the	y	-component	of
momentum	separately.	Let’s	begin	by	defining	“right”	and	“up”	to	be	the
positive	directions.	Now	we	can	look	at	the	x	-component.



We	can’t	do	much	more	with	the	x	-component	of	momentum,	so	now	let’s	look
at	the	y	-component.

(Note	the	negative	sign	on	Maggie’s	y	-velocity!)

Okay.	Now	we	have	two	equations	and	two	unknowns.	It’ll	take	some	algebra	to
solve	this	one,	but	none	of	it	is	too	hard.	We	will	assume	that	you	can	do	the
math	on	your	own,	but	we	will	gladly	provide	you	with	the	answer:

The	algebra	is	not	particularly	important	here.	Get	the	conceptual	physics	down
—in	a	two-dimensional	collision,	you	must	treat	each	direction	separately.	If	you
do	so,	you	will	receive	virtually	full	credit	on	an	AP	problem.	If	you	combine
vertical	and	horizontal	momentum	into	a	single	conservation	equation,	you	will
probably	not	receive	any	credit	at	all.

	Practice	Problems

Multiple	Choice:
First	two	questions:	A	ball	of	mass	M	is	caught	by	someone	wearing	a	baseball
glove.	The	ball	is	in	contact	with	the	glove	for	a	time	t	;	the	initial	velocity	of	the
ball	(just	before	the	catcher	touches	it)	is	v	0	.

1	.	If	the	time	of	the	ball’s	collision	with	the	glove	is	doubled,	what	happens	to
the	force	necessary	to	catch	the	ball?

(A)	It	doesn’t	change.



(B)	It	is	cut	in	half.
(C)	It	is	cut	to	one-fourth	of	the	original	force.
(D)	It	quadruples.
(E)	It	doubles.

2	.	If	the	time	of	collision	remains	t	,	but	the	initial	velocity	is	doubled,	what
happens	to	the	force	necessary	to	catch	the	ball?

(A)	It	doesn’t	change.
(B)	It	is	cut	in	half.
(C)	It	is	cut	to	one-fourth	of	the	original	force.
(D)	It	quadruples.
(E)	It	doubles.

3	.	Two	balls,	of	mass	m	and	2m	,	collide	and	stick	together.	The	combined	balls
are	at	rest	after	the	collision.	If	the	ball	of	mass	m	was	moving	5	m/s	to	the
right	before	the	collision,	what	was	the	velocity	of	the	ball	of	mass	2m	before
the	collision?

(A)	2.5	m/s	to	the	right
(B)	2.5	m/s	to	the	left
(C)	10	m/s	to	the	right
(D)	10	m/s	to	the	left
(E)	1.7	m/s	to	the	left

4	.	Two	identical	balls	have	initial	velocities	v	1	=	4	m/s	to	the	right	and	v	2	=	3
m/s	to	the	left,	respectively.	The	balls	collide	head-on	and	stick	together.
What	is	the	velocity	of	the	combined	balls	after	the	collision?

(A)	 	m/s	to	the	right
(B)	 	m/s	to	the	right
(C)	½	m/s	to	the	right
(D)	 	m/s	to	the	right



(E)	1	m/s	to	the	right

Free	Response:

5	.	A	75-kg	skier	skis	down	a	hill.	The	skier	collides	with	a	40-kg	child	who	is
at	rest	on	the	flat	surface	near	the	base	of	the	hill,	100	m	from	the	skier’s
starting	point,	as	shown	above.	The	skier	and	the	child	become	entangled.
Assume	all	surfaces	are	frictionless.

(a)	How	fast	will	the	skier	be	moving	when	he	reaches	the	bottom	of	the	hill?
Assume	the	skier	is	at	rest	when	he	begins	his	descent.

(b)	What	will	be	the	speed	of	the	skier	and	child	just	after	they	collide?
(c)	If	the	collision	occurs	in	half	a	second,	how	much	force	will	be

experienced	by	each	person?

	Solutions	to	Practice	Problems
1	.	B—	Impulse	is	force	times	the	time	interval	of	collision,	and	is	also	equal	to
an	object’s	change	in	momentum.	Solving	for	force,	F	=	Δp	/Δt	.	Because	the
ball	still	has	the	same	mass,	and	still	changes	from	speed	v	0	to	speed	zero,	the
ball’s	momentum	change	is	the	same,	regardless	of	the	collision	time.	The
collision	time,	in	the	denominator,	doubled;	so	the	entire	expression	for	force
was	cut	in	half.

2	.	E—	Still	use	F	=	Δp	/Δt	,	but	this	time	it	is	the	numerator	that	changes.	The
ball	still	is	brought	to	rest	by	the	glove,	and	the	mass	of	the	ball	is	still	the
same;	but	the	doubled	velocity	upon	reaching	the	glove	doubles	the
momentum	change.	Thus,	the	force	doubles.



3	.	B—	The	total	momentum	after	collision	is	zero.	So	the	total	momentum
before	collision	must	be	zero	as	well.	The	mass	m	moved	5	m/s	to	the	right,
giving	it	a	momentum	of	5m	units;	the	right-hand	mass	must	have	the	same
momentum	to	the	left.	It	must	be	moving	half	as	fast,	2.5	m/s,	because	its
mass	it	twice	as	big;	then	its	momentum	is	(2m	)(2.5)	=	5m	units	to	the	left.

4	.	C—	Because	the	balls	are	identical,	just	pretend	they	each	have	mass	1	kg.
Then	the	momentum	conservation	tells	us	that

(1	kg)(+4	m/s)	+	(1	kg)(−3	m/s)	=	(2	kg)(v	′).

The	combined	mass,	on	the	right	of	the	equation	above,	is	2	kg;	v	′	represents
the	speed	of	the	combined	mass.	Note	the	negative	sign	indicating	the
direction	of	the	second	ball’s	velocity.	Solving,	v	′	=	+0.5	m/s,	or	0.5	m/s	to
the	right.

5	.	(a)	This	part	is	not	a	momentum	problem,	it’s	a	Newton’s	second	law	and
kinematics	problem.	(Or	it’s	an	energy	problem,	if	you’ve	studied	energy.)
Break	up	forces	on	the	skier	into	parallel	and	perpendicular	axes—the	net
force	down	the	plane	is	mg	(sin	45°).	So	by	Newton’s	second	law,	the
acceleration	down	the	plane	is	g	(sin	45°)	=	7.1	m/s2	.	Using	kinematics
with	intitial	velocity	zero	and	distance	100	m,	the	skier	is	going	38	m/s	(!).

(b)	Now	use	momentum	conservation.	The	total	momentum	before	collision	is
(75	kg)(38	m/s)	=	2850	kg·m/s.	This	must	equal	the	total	momentum	after
collision.	The	people	stick	together,	with	combined	mass	115	kg.	So	after
collision,	the	velocity	is	2850	kg·m/s	divided	by	115	kg,	or	about	25	m/s.

(c)	Change	in	momentum	is	force	multiplied	by	time	interval	…	the	child
goes	from	zero	momentum	to	(40	kg)(25	m/s)	=	1000	kg·m/s	of
momentum.	Divide	this	change	in	momentum	by	0.5	seconds,	and	you	get
2000	N,	or	a	bit	less	than	a	quarter	ton	of	force.	Ouch!

	Rapid	Review
•			Momentum	equals	an	object’s	mass	multiplied	by	its	velocity.	However,	you
can	also	think	of	momentum	as	the	amount	of	“oomph”	a	mass	has	in	a
collision.

•			Impulse	equals	the	change	in	an	object’s	momentum.	It	also	equals	the	force
exerted	on	an	object	multiplied	by	the	time	it	took	to	apply	that	force.

•			Momentum	is	always	conserved.	When	solving	conservation	of	momentum



problems,	remember	that	momentum	is	a	vector	quantity.

•			In	an	elastic	collision,	kinetic	energy	is	conserved.	When	two	objects	collide
and	bounce	off	each	other,	without	losing	any	energy	(to	heat,	sound,	etc.),
they	have	engaged	in	an	elastic	collision.	In	an	inelastic	collision,	kinetic
energy	is	not	conserved.	The	extreme	case	is	a	perfectly	inelastic	collision.
When	two	objects	collide	and	stick	together,	they	have	engaged	in	a	perfectly
inelastic	collision.



1	This	chapter	deals	only	with	linear	momentum.	Angular	momentum	is	covered	in	Chapter	16	.



CHAPTER 	 13

Momentum

1	.				Two	spheres	traveling	in	opposite	directions	collide	head-on	as	shown.	The
graph	shows	the	force	between	the	spheres	during	the	collision.	The	velocity
of	the	10	kg	sphere	after	the	collision	is
(A)			1	m/s	to	the	left.
(B)			1.75	m/s	to	the	left.
(C)			1.75	m/s	to	the	right.
(D)			4	m/s	to	the	left.
(E)			5	m/s	to	the	right.



2	.				A	skateboard	rolls	under	a	tree	at	a	constant	velocity;	a	cat	drops	vertically
out	of	a	tree	and	lands	on	it.	The	skateboard	and	cat	move	off	together.
Which	of	the	following	statements	is	correct?
(A)			The	skateboard	speeds	up	because	the	cat	adds	kinetic	energy	to	the

system.
(B)			The	skateboard	speeds	up	because	the	cat	adds	vertical	momentum	to

the	system.
(C)			The	skateboard	continues	moving	at	the	same	speed	as	the	cat	and

skateboard	exert	equal	and	opposite	forces	on	each	other	that	cancel	out
during	the	collision.

(D)			The	skateboard	slows	down	due	to	the	cat’s	loss	of	kinetic	energy	when
it	lands	on	the	skateboard	and	stops	moving	vertically.

(E)			The	skateboard	slows	down	due	to	the	added	mass	of	the	cat	to	the
horizontally	moving	skateboard.

3	.				The	initial	velocity	(v	1	)	of	a	cue	ball	is	to	the	left.	After	striking	the	eight
ball,	the	cue	ball	has	a	final	velocity	(v	2	),	as	shown	in	the	figure.	The
direction	of	the	impulse	from	the	eight	ball	on	the	cue	ball	is	best	described
by	which	of	the	following	vectors?
(A)			
(B)			



(C)			

(D)			

(E)			

4	.				An	air	force	jet	has	a	Gatling	gun	mounted	in	its	nose	such	that	it	can	fire
an	ordnance	round	directly	forward	at	a	velocity	of	v	0	.	The	total	mass	of	the
jet	and	ordinance	is	M	.	The	ordnance	mass	is	m	.	While	flying	at	a	velocity
of	vj	,	the	jet	fires	the	ordnance	directly	forward	as	shown	in	the	figure.	What
will	be	the	final	velocity	(vf	)	of	the	jet	after	it	fires	the	ordnance?

(A)			

(B)			

(C)			

(D)			

(E)			

	Answers



1	.				A	—The	area	(integral)	of	the	force-time	graph	equals	the	impulse,	and	the
impulse	equals	the	spheres’	change	in	momentum:

Note	that	the	impulse	is	directed	to	the	left	on	the	10	kg	sphere,	which	is	the
opposite	direction	of	its	velocity.	This	makes	the	impulse	negative:

2	.				E	—This	a	perfectly	inelastic	collision;	therefore,	kinetic	energy	is	not
conserved.	Thus,	we	can	ignore	answer	choices	that	contain	kinetic	energy.
Momentum	is	only	conserved	in	the	horizontal	direction	because	the	ground
does	not	allow	the	cat-skateboard	system	to	move	vertically.	Using
conservation	of	horizontal	momentum,	we	can	see	that	the	skateboard	speed
must	decrease	because	the	cat	adds	mass	to	the	system:

Note:	The	equal	and	opposite	forces	between	the	cat	and	the	skateboard	do
not	cancel!	The	force	from	the	cat	on	the	skateboard	slows	the	skateboard
down,	while	the	force	from	the	skateboard	on	the	cat	speeds	the	cat	up.	Both
end	up	with	the	same	final	velocity	and	move	off	together.

3	.				B	—Impulse	equals	the	change	in	momentum.	Because	the	mass	of	the	cue
ball	remains	the	same	during	the	collision,	the	impulse	will	be	in	the
direction	of	the	change	in	velocity.	J	=	Δp	=	Δ(mv	=	m	(Δv	).	The	change	in



velocity	is	best	described	by	choice	B.

4	.				A	—Conservation	of	momentum	gives	us	the	following:

Note	that	we	need	to	subtract	the	mass	of	the	ordnance	from	the	combined
mass	(M	)	after	it	has	been	fired	from	the	jet.



CHAPTER 	 14

Energy	Conservation

IN	THIS	CHAPTER

Summary:	While	kinematics	can	be	used	to	predict	the	speeds	of	objects	with	constant	acceleration,	energy
conservation	is	a	more	powerful	tool	that	can	predict	how	objects	will	move	even	with	a	changing
acceleration.

Key	Ideas
		Work	is	related	to	kinetic	energy	through	the	work–energy	theorem.
		There	are	many	types	of	potential	energy.	Two	(due	to	gravity	and	due	to	a
spring)	are	discussed	in	this	chapter.
		To	use	conservation	of	energy,	add	potential	+	kinetic	energy	at	two	positions
in	an	object’s	motion.	This	sum	must	be	the	same	everywhere.
		A	potential	energy	function	can	be	derived	for	any	conservative	force.

Relevant	Equations
The	definition	of	work:

W	=	F	·d	||

The	work–energy	theorem:



W	net	=	ΔK

The	force	of	a	spring:

F	=	−kx

Two	different	types	of	potential	energy:

Power:

Relationship	between	a	conservative	force	F	and	the	potential	energy	U	it
creates:

As	with	momentum,	the	energy	of	an	isolated	system	is	always	conserved.	It
might	change	form—potential	energy	can	be	converted	to	kinetic	energy,	or
kinetic	energy	can	be	converted	to	heat—but	it’ll	never	simply	disappear.

Conservation	of	energy	is	one	of	the	most	important,	fundamental	concepts
in	all	of	physics	…	translation:	it’s	going	to	show	up	all	over	the	AP	exam.	So
read	this	chapter	carefully.

Kinetic	Energy	and	the	Work-Energy	Theorem
We’ll	start	with	some	definitions.



What	this	second	definition	means	is	that	work	equals	the	product	of	the	distance
an	object	travels	and	the	component	of	the	force	acting	on	that	object	directed
parallel	to	the	object’s	direction	of	motion.	That	sounds	more	complicated	than	it
really	is:	an	example	will	help.

A	box	is	pulled	along	the	floor,	as	shown	in	Figure	14.1	.	It	is	pulled	a
distance	of	10	m,	and	the	force	pulling	it	has	a	magnitude	of	5	N	and	is	directed
30°	above	the	horizontal.	So,	the	force	component	that	is	PARALLEL	to	the	10
m	displacement	is	(5	N)(cos	30°).

Figure	14.1			Box	is	pulled	along	the	floor.

One	newton·meter	is	called	a	joule,	abbreviated	as	1	J.

•			Work	is	a	scalar.	So	is	energy.
•			The	units	of	work	and	of	energy	are	joules.
•			Work	can	be	negative	…	this	just	means	that	the	force	is	applied	in	the
direction	opposite	displacement.

This	means	that	the	kinetic	energy	of	an	object	equals	one-half	the	object’s	mass



times	its	speed	squared.

The	net	work	done	on	an	object	is	equal	to	that	object’s	change	in	kinetic	energy.
Here’s	an	application:

A	train	car	with	a	mass	of	200	kg	is	traveling	at	20	m/s.	How	much	force	must
the	brakes	exert	in	oder	to	stop	the	train	car	in	a	distance	of	10	m?

Here,	because	the	only	horizontal	force	is	the	force	of	the	brakes,	the	work	done
by	this	force	is	W	net	.

Let’s	pause	for	a	minute	to	think	about	what	this	value	means.	We’ve	just
calculated	the	change	in	kinetic	energy	of	the	train	car,	which	is	equal	to	the	net
work	done	on	the	train	car.	The	negative	sign	simply	means	that	the	net	force
was	opposite	the	train’s	displacement.
To	find	the	force:



Potential	Energy

Potential	energy	comes	in	many	forms:	there’s	gravitational	potential	energy,
spring	potential	energy,	electrical	potential	energy,	and	so	on.	For	starters,	we’ll
concern	ourselves	with	gravitational	potential	energy.

Gravitational	PE	is	described	by	the	following	equation:

U	=	mgh

In	this	equation,	m	is	the	mass	of	an	object,	g	is	the	gravitational	field	of	10	N/kg
on	Earth,	and	h	is	the	height	of	an	object	above	a	certain	point	(called	“the	zero
of	potential”).	1	That	point	can	be	wherever	you	want	it	to	be,	depending	on	the
problem.	For	example,	let’s	say	a	pencil	is	sitting	on	a	table.	If	you	define	the
zero	of	potential	to	be	the	table,	then	the	pencil	has	no	gravitational	PE.	If	you
define	the	floor	to	be	the	zero	of	potential,	then	the	pencil	has	PE	equal	to	mgh	,
where	h	is	the	height	of	the	pencil	above	the	floor.	Your	choice	of	the	zero	of
potential	in	a	problem	should	be	made	by	determining	how	the	problem	can
most	easily	be	solved.

REMINDER:	h	in	the	potential	energy	equation	stands	for	vertical	height
above	the	zero	of	potential.

Conservation	of	Energy:	Problem-Solving	Approach



Solving	energy-conservation	problems	is	relatively	simple,	as	long	as	you
approach	them	methodically.	The	general	approach	is	this:	write	out	all	the	terms
for	the	initial	energy	of	the	system,	and	set	the	sum	of	those	terms	equal	to	the
sum	of	all	the	terms	for	the	final	energy	of	the	system.	Let’s	practice.

A	block	of	mass	m	is	placed	on	a	frictionless	plane	inclined	at	a	30°	angle
above	the	horizontal.	It	is	released	from	rest	and	allowed	to	slide	5	m	down	the
plane.	What	is	its	final	velocity?

If	we	were	to	approach	this	problem	using	kinematics	equations	(which	we
could),	it	would	take	about	a	page	of	work	to	solve.	Instead,	observe	how
quickly	it	can	be	solved	using	conservation	of	energy.

We	will	define	our	zero	of	potential	to	be	the	height	of	the	box	after	it	has	slid
the	5	m	down	the	plane.	By	defining	it	this	way,	the	PE	term	on	the	right	side	of
the	equation	will	cancel	out.	Furthermore,	because	the	box	starts	from	rest,	its
initial	KE	also	equals	zero.

The	initial	height	can	be	found	using	trigonometry:	h	i	=	(5m)	(sin	30°)	=	2.5	m.



In	general,	the	principle	of	energy	conservation	can	be	stated	mathematically
like	this:

The	term	W	in	this	equation	stands	for	work	done	on	an	object.	For	example,	if
there	had	been	friction	between	the	box	and	the	plane	in	the	previous	example,
the	work	done	by	friction	would	be	the	W	term.	When	it	comes	to	the	AP	exam,
you	will	include	this	W	term	only	when	there	is	friction	(or	some	other	exteral
force)	involved.	When	friction	is	involved,	W	=	F	f	d	,	where	F	f	is	the	force	of
friction	on	the	object,	and	d	is	the	distance	the	object	travels.

Let’s	say	that	there	was	friction	between	the	box	and	the	inclined	plane.

A	box	of	mass	m	is	placed	on	a	plane	inclined	at	a	30°	angle	above	the
horizontal.	The	coefficient	of	friction	between	the	box	and	the	plane	is	0.20.
The	box	is	released	from	rest	and	allowed	to	slide	5.0	m	down	the	plane.	What
is	its	final	velocity?

We	start	by	writing	the	general	equation	for	energy	conservation:

Ki	+	Ui	+	W	=	Ef	+	Uf

W	equals	F	f	d	,	where	F	f	is	the	force	of	friction,	and	d	is	5	m.	2



The	value	for	W	is	negative	because	friction	acts	opposite	displacement.	You
may	want	to	draw	a	free-body	diagram	to	understand	how	we	derived	this	value
for	F	N	.
Now,	plugging	in	values	we	have

We	rearrange	some	terms	and	cancel	out	m	from	each	side	to	get

v	f	=	5.7	m/s

This	answer	makes	sense—friction	on	the	plane	reduces	the	box’s	speed	at	the
bottom.

Springs
Gravitational	potential	energy	isn’t	the	only	kind	of	PE	around.	Another
frequently	encountered	form	is	spring	potential	energy.

The	force	exerted	by	a	spring	is	directly	proportional	to	the	amount	that	the
spring	is	compressed.	That	is,

In	this	equation,	k	is	a	constant	(called	the	spring	constant),	and	x	is	the	distance
that	the	spring	has	been	compressed	or	extended	from	its	equilibrium	state.	The
negative	sign	is	simply	a	reminder	that	the	force	of	a	spring	always	acts	opposite
to	displacement—an	extended	spring	pulls	back	toward	the	equilibrium	position,
while	a	compressed	spring	pushes	toward	the	equilibrium	position.	We	call	this
type	of	force	a	restoring	force,	and	we	discuss	it	more	in	Chapter	17	on	simple
harmonic	motion.	However,	we	can	ignore	this	sign	unless	we	are	doing
calculus.

When	a	spring	is	either	compressed	or	extended,	it	stores	potential	energy.
The	amount	of	energy	stored	is	given	as	follows.



Similarly,	the	work	done	by	a	spring	is	given	by	W	spring	=	½kx	2	.	Here’s	an
example	problem.

A	block	with	a	mass	of	2	kg	is	attached	to	a	spring	with	k	=	1	N/m.	The	spring
is	compressed	10	cm	from	equlibrium	and	than	released.	How	fast	is	the	block
traveling	when	it	passes	through	the	equilibrium	point?	Neglect	friction.

It’s	important	to	recognize	that	we	CANNOT	use	kinematics	to	solve	this
problem!	Because	the	force	of	a	spring	changes	as	it	stretches,	the	block’s
acceleration	is	not	constant.	When	acceleration	isn’t	constant,	try	using	energy
conservation.

We	begin	by	writing	our	statement	for	conservation	of	energy.

Now	we	fill	in	values	for	each	term.	PE	here	is	just	in	the	form	of	spring
potential	energy,	and	there’s	no	friction,	so	we	can	ignore	the	W	term.	Be	sure	to
plug	in	all	values	in	meters!



Plugging	in	values	for	k	and	m	,	we	have

Power
Whether	you	walk	up	a	mountain	or	whether	a	car	drives	you	up	the	mountain,
the	same	amount	of	work	has	to	be	done	on	you.	(You	weigh	a	certain	number	of
newtons,	and	you	have	to	be	lifted	up	the	same	distance	either	way!)	But	clearly
there’s	something	different	about	walking	up	over	the	course	of	several	hours
and	driving	up	over	several	minutes.	That	difference	is	power.

Power	is,	thus,	measured	in	units	of	joules/second,	also	known	as	watts.	A	car
engine	puts	out	hundreds	of	horsepower,	equivalent	to	maybe	100	kilowatts;
whereas,	you’d	work	hard	just	to	put	out	a	power	of	a	few	hundred	watts.

Potential	Energy	vs.	Displacement	Graphs

A	different	potential	energy	function	can	actually	be	derived	for	ANY
conservative	force.	(A	conservative	force	means	that	energy	is	conserved	when
this	force	acts	…	examples	are	gravity,	spring,	and	electromagnetic	forces;
friction	and	air	resistance	are	the	most	common	nonconservative	forces.)	The
potential	energy	U	for	a	force	is	given	by	the	following	integral:



Note	that	this	equation	works	for	the	gravitational	force	F	=	−mg	(where	−	is	the
down	direction)	and	the	spring	force	F	=	−kx	;	the	potential	energy	attributable	to
gravity	integrates	to	mgh	,	and	the	spring	potential	energy	becomes	½kx	2	.

Chris	on	a	Skateboard
Once	a	potential	energy	of	an	object	is	found	as	a	function	of	position,	making	a
U	vs.	x	graph	tells	a	lot	about	the	long-term	motion	of	the	object.	Consider	the
potential	energy	of	a	spring,	½kx	2	.	A	graph	of	this	function	looks	like	a
parabola,	as	shown	in	Figure	14.2	.

Figure	14.2			Potential	energy	vs.	displacement	graph	for	a	spring.

You	can	get	a	general	feel	for	how	the	mass	on	a	spring	moves	by	imagining
that	Chris	is	riding	a	skateboard	on	a	ramp	shaped	like	the	graph.	A	ramp	shaped
like	this	looks	like	a	half-pipe.	If	he	starts	from	some	height	above	the	bottom,
Chris	will	oscillate	back	and	forth,	going	fastest	in	the	middle,	and	turning
around	when	he	runs	out	of	energy	at	the	right	or	left	end.	Although	this	is	not
precisely	how	a	mass	on	a	spring	moves—the	mass	only	moves	back	and	forth,
for	example—the	long-term	properties	of	Chris’s	motion	and	the	motion	of	the
mass	on	a	spring	are	the	same.	The	mass	oscillates	back	and	forth,	with	its
fastest	speed	in	the	middle,	just	like	Chris	does.

Thinking	about	Chris	on	a	skateboard	works	for	all	U	vs.	x	graphs.	Consider
a	model	of	the	energy	between	two	atoms	that	looks	like	the	graph	in	Figure	14.3
.



Figure	14.3			Potential	energy	vs.	displacement	graph	for	two	atoms.

If	Chris	on	his	skateboard	released	himself	from	rest	near	position	x	1	,	he’d	just
oscillate	back	and	forth,	much	like	in	the	mass	on	a	spring	problem.	But	if	he
were	to	let	go	near	the	position	labeled	x	2	,	he’d	have	enough	energy	to	keep
going	to	the	right	as	far	as	he	wants;	in	fact,	he’d	make	it	off	the	page,	never
coming	back.	This	is	what	happens	to	the	atoms	in	molecules,	too.	If	a	second
atom	is	placed	pretty	close	to	a	distance	x	1	from	the	first	atom,	it	will	just
oscillate	back	and	forth	about	that	position.	However,	if	the	second	atom	is
placed	very	close	to	the	first	atom,	it	will	gain	enough	energy	to	escape	to	a
faraway	place.

	Practice	Problems

Multiple	Choice:
Questions	1	and	2



A	block	of	weight	mg	=	100	N	slides	a	distance	of	5.0	m	down	a	30-degree
incline,	as	shown	above.

1	.	How	much	work	is	done	on	the	block	by	gravity?

(A)	500	J
(B)	430	J
(C)	100	J
(D)	50	J
(E)	250	J

2	.	If	the	block	experiences	a	constant	friction	force	of	10	N,	how	much	work	is
done	by	the	friction	force?

(A)	−43	J
(B)	−25	J
(C)	−500	J
(D)	−100	J
(E)	−50	J



3	.	A	mass	experiences	a	potential	energy	U	that	varies	with	distance	x	as	shown
in	the	graph	above.	The	mass	is	released	from	position	x	=	0	with	10	J	of
kinetic	energy.	Which	of	the	following	describes	the	long-term	motion	of	the
mass?

(A)	The	mass	eventually	comes	to	rest	at	x	=	0.
(B)	The	mass	slows	down	with	constant	acceleration,	stopping	at	x	=	5	cm.
(C)	The	mass	speeds	up	with	constant	acceleration.
(D)	The	mass	oscillates,	never	getting	farther	than	5	cm	from	x	=	0.
(E)	The	mass	oscillates,	never	getting	farther	than	10	cm	from	x	=	0.

4	.	Two	identical	balls	of	mass	m	=	1.0	kg	are	moving	towards	each	other,	as
shown	above.	What	is	the	initial	kinetic	energy	of	the	system	consisting	of	the
two	balls?

(A)	0	joules
(B)	1	joules
(C)	12	joules
(D)	18	joules
(E)	36	joules

Free	Response:



5	.	A	1500-kg	car	moves	north	according	to	the	velocity–time	graph	shown.

(a)	Determine	the	change	in	the	car’s	kinetic	energy	during	the	first	7	s.
(b)	To	determine	how	far	the	car	traveled	in	these	7	s,	the	three	basic

kinematics	equations	can	not	be	used.	Explain	why	not.
(c)	Use	the	velocity–time	graph	to	estimate	the	distance	the	car	traveled	in	7

s.
(d)	What	was	the	net	work	done	on	the	car	in	these	7	s?
(e)	Determine	the	average	power	necessary	for	the	car	to	perform	this	motion.

	Solutions	to	Practice	Problems
1	.	E—	The	force	of	gravity	is	straight	down	and	equal	to	100	N.	The
displacement	parallel	to	this	force	is	the	vertical	displacement,	2.5	m.	Work
equals	force	times	parallel	displacement,	250	J.

2	.	E—	The	force	of	friction	acts	up	the	plane,	and	displacement	is	down	the
plane,	so	just	multiply	force	times	distance	to	get	50	J.	The	negative	sign
indicates	that	force	is	opposite	displacement.

3	.	D—	Think	of	Chris	on	a	skateboard—on	this	graph,	he	will	oscillate	back



and	forth	about	x	=	0.	Because	he	starts	with	a	KE	of	10	J,	he	can,	at	most,
have	a	potential	energy	of	10	J,	which	corresponds	on	the	graph	to	a
maximum	displacement	of	5	cm.	(The	mass	cannot	have	constant	acceleration
because	constant	acceleration	only	occurs	for	a	constant	force;	a	constant
force	produces	an	energy	graph	that	is	linear.	The	mass	will	not	come	to	rest
because	we	are	assuming	a	conservative	force,	for	which	KE	can	be
converted	to	and	from	PE	freely.)

4	.	E—	Kinetic	energy	is	a	scalar,	so	even	though	the	balls	move	in	opposite
directions,	the	KEs	cannot	cancel.	Instead,	kinetic	energy	½(1	kg)(6	m/s)2
attributable	to	different	objects	adds	together	algebraically,	giving	36	J	total.

5	.	(a)	The	car	started	from	rest,	or	zero	KE.	The	car	ended	up	with	½(1500	kg)
(40	m/s)2	=	1.2	×	106	J	of	kinetic	energy.	So	its	change	in	KE	is	1.2	×	106
J.

(b)	The	acceleration	is	not	constant.	We	know	that	because	the	velocity–time
graph	is	not	linear.

(c)	The	distance	traveled	is	found	from	the	area	under	the	graph.	It	is	easiest
to	approximate	by	counting	boxes,	where	one	of	the	big	boxes	is	10	m.
There	are,	give-or-take,	19	boxes	underneath	the	curve,	so	the	car	went
190	m.

(d)	We	cannot	use	work	=	force	×	distance	here,	because	the	net	force	is
continually	changing	(because	acceleration	is	changing).	But	Wnet	=	ΔKE
is	always	valid.	In	part	(a)	the	car’s	change	in	KE	was	found	to	be	1.2	×
106	J;	so	the	net	work	done	on	the	car	is	also	1.2	×	106	J.

(e)	Power	is	work	divided	by	time,	or	1.2	×	106	J/7	s	=	170	kW.	This	can	be
compared	to	the	power	of	a	car,	220	horsepower.

	Rapid	Review
•			Energy	is	the	ability	to	do	work.	Both	energy	and	work	are	scalars.

•			The	work	done	on	an	object	(or	by	an	object)	is	equal	to	that	object’s	change
in	kinetic	energy.

•			Potential	energy	is	energy	of	position,	and	it	comes	in	a	variety	of	forms;	for
example,	there’s	gravitational	potential	energy	and	spring	potential	energy.

•			The	energy	of	a	closed	system	is	conserved.	To	solve	a	conservation	of	energy



problem,	start	by	writing	K	i	+	Ui	+	W	=	K	f	+	Uf	,	where	“i	”	means	“initial,”
“f	”	means	“final,”	and	W	is	the	work	done	by	friction	or	an	externally	applied
force.	Think	about	what	type	of	U	you’re	dealing	with;	there	might	even	be
more	than	one	form	of	U	in	a	single	problem!

•			Power	is	the	rate	at	which	work	is	done,	measured	in	watts.	Power	is	equal	to
work/time	,	which	is	equivalent	to	force	multiplied	by	velocity.

•			If	the	functional	form	of	a	conservative	force	is	known,	then	the	potential
energy	attributable	to	that	force	is	given	by

When	this	U	is	graphed	against	displacement,	the	motion	of	an	object	can	be
predicted	by	imagining	“Chris	on	a	skateboard”	skating	on	the	graph.



1	Note	that	10	N/kg	is	exactly	the	same	as	10	m/s2	.
2	Note	this	difference	carefully.	Although	potential	energy	involves	only	a	vertical	height,	work	done	by

friction	includes	the	entire	distance	the	box	travels.



CHAPTER 	 14

Energy

1	.				A	2	kg	mass	experiences	a	potential	energy	that	varies	with	x	as	shown	in
the	graph.	Which	statement	correctly	describes	the	behavior	of	the	mass?
(A)			When	at	a	location	of	1	m,	the	mass	will	experience	a	force	in	the

negative	x	direction.
(B)			When	at	a	location	of	1	m,	the	mass	will	experience	no	force.
(C)			If	released	from	rest	at	a	location	of	3	m,	the	mass	will	reach	a

maximum	speed	of	 	.
(D)			If	released	from	rest	at	a	location	of	3	m,	the	mass	will	oscillate	about

an	equilibrium	at	location	of	2	m	on	the	x	-axis.
(E)			If	released	from	rest	at	a	location	of	5	m,	the	mass	will	reach	a

maximum	speed	of	20	m/s.



2	.				An	80	kg	roller-coaster	car	traveling	10	m/s	passes	over	the	crest	of	a	40	m
hill,	as	shown	in	the	figure.	The	speed	of	the	car	at	the	bottom	of	the	hill	is
24	m/s.	The	energy	lost	to	friction	is	most	nearly
(A)			60	J
(B)			1,000	J
(C)			5,000	J
(D)			13,000	J
(E)			22,500	J

3	.				A	block	of	mass	(m	)	is	released	from	the	top	of	a	frictionless	incline	at	a
distance	of	l	from	the	bottom.	The	block	slides	down	the	incline	and	then
across	a	frictionless	horizontal	plane.	At	the	far	end	of	the	horizontal	plane	is
a	fixed	spring	with	force	constant	k	.	What	will	be	the	maximum
compression	of	the	spring?

(A)			

(B)			

(C)			



(D)			

(E)			

4	.				The	following	graphs	represent	the	force	(F	)	applied	to	an	experimental	car
of	mass	m	.	The	engine	of	the	car	can	supply	a	maximum	force	(F	max	).
Which	force	distribution	will	cause	the	greatest	change	in	kinetic	energy	of
the	car	from	x	=	0	to	x	f	?

(A)			

(B)			

(C)			

(D)			

(E)			

	Answers



1	.				A	— 	.	This	can	be	written	in	differential	form	as	 	,

which	shows	that	the	force	on	the	object	will	be	the	negative	of	the	slope	of
the	potential	energy	graph.	At	1	m,	this	indicates	that	the	force	will	be	in	the
negative	x	-direction.	Note:	The	peak	of	the	potential	energy	graph	at	2	m	is
not	a	stable	equilibrium	point,	and	the	forces	will	push	the	2	kg	mass	away
from	this	point.

2	.				C	—Using	conservation	of	energy	and	g	=	10	m/s2	,	we	get

3	.				C	—Using	conservation	of	energy,



4	.				D	—The	net	work	done	on	the	car	is	the	integration	(area)	of	the	F-x	graph.
The	graph	with	the	most	area	is	choice	D.



CHAPTER 	 15

Gravitation	and	Circular	Motion

IN	THIS	CHAPTER

Summary:	When	an	object	moves	in	a	circle,	it	is	accelerating	toward	the	center	of	the	circle.	Any	two
massive	objects	attract	each	other	due	to	gravity.

Key	Ideas
		Centripetal	(center-seeking)	acceleration	is	equal	to	 	.

		Circular	motion	(and	gravitation)	problems	still	require	a	free-body	diagram
and	the	four-step	problem-solving	process.
		The	gravitational	force	between	two	objects	is	bigger	for	bigger	masses,	and
smaller	for	larger	separations	between	the	objects.
		Kepler’s	laws	apply	to	the	orbits	of	planets.

Relevant	Equations
Centripetal	acceleration:

Gravitational	force	between	any	two	masses:



Gravitational	potential	energy	a	long	way	from	a	planet:

It	might	seem	odd	that	we’re	covering	gravitation	and	circular	motion	in	the
same	chapter.	After	all,	one	of	these	topics	relates	to	the	attractive	force	exerted
between	two	massive	objects,	and	the	other	one	relates	to,	well,	swinging	a
bucket	over	your	head.

However,	as	you’re	probably	aware,	the	two	topics	have	plenty	to	do	with
each	other.	Planetary	orbits,	for	instance,	can	be	described	only	if	you
understand	both	gravitation	and	circular	motion.	And,	sure	enough,	the	AP	exam
frequently	features	questions	about	orbits.

So	let’s	look	at	these	two	important	topics,	starting	with	circular	motion.

Velocity	and	Acceleration	in	Circular	Motion
Remember	how	we	defined	acceleration	as	an	object’s	change	in	velocity	in	a
given	time?	Well,	velocity	is	a	vector,	and	that	means	that	an	object’s	velocity
can	change	either	in	magnitude	or	in	direction	(or	both).	In	the	past,	we	have
talked	about	the	magnitude	of	an	object’s	velocity	changing.	Now,	we	discuss
what	happens	when	the	direction	of	an	object’s	velocity	changes.

When	an	object	maintains	the	same	speed	but	turns	in	a	circle,	the	magnitude
of	its	acceleration	is	constant	and	directed	toward	the	center	of	the	circle.	This
means	that	the	acceleration	vector	is	perpendicular	to	the	velocity	vector	at	any
given	moment,	as	shown	in	Figure	15.1	.



Figure	15.1			Velocity	and	acceleration	of	an	object	traveling	in	uniform
circular	motion.

The	velocity	vector	is	always	directed	tangent	to	the	circle,	and	the
acceleration	vector	is	always	directed	toward	the	center	of	the	circle.	There’s	a
way	to	prove	that	statement	mathematically,	but	it’s	complicated,	so	you’ll	just
have	to	trust	us.	(You	can	refer	to	your	textbook	for	the	complete	derivation.)

Centripetal	Acceleration
On	to	a	few	definitions.

Centripetal	acceleration:	The	acceleration	keeping	an	object	in	uniform
circular	motion,	abbreviated	a	c

We	know	that	the	net	force	acting	on	an	object	is	related	to	the	object’s
acceleration	by	F	net	=	ma	.	And	we	know	that	the	acceleration	of	an	object	in
circular	motion	points	toward	the	center	of	the	circle.	So	we	can	conclude	that
the	centripetal	force	acting	on	an	object	also	points	toward	the	center	of	the
circle.

The	formula	for	centripetal	acceleration	is

In	this	equation,	v	is	the	object’s	velocity,	and	r	is	the	radius	of	the	circle	in
which	the	object	is	traveling.

Centrifugal	acceleration:	As	far	as	you’re	concerned,	nonsense.	Acceleration
in	circular	motion	is	always	toward	,	not	away	from,	the	center.



Centripetal	acceleration	is	real;	centrifugal	acceleration	is	nonsense,	unless
you’re	willing	to	read	a	multipage	discussion	of	“non-inertial	reference	frames”
and	“fictitious	forces.”	So	for	our	purposes,	there	is	no	such	thing	as	a
centrifugal	(center-fleeing)	acceleration.	When	an	object	moves	in	a	circle,	the
acceleration	(and	also	the	net	force)	must	point	to	the	center	of	the	circle	.

The	main	thing	to	remember	when	tackling	circular	motion	problems	is	that
a	centripetal	force	is	simply	whatever	force	is	directed	toward	the	center	of	the
circle	in	which	the	object	is	traveling	.	So,	first	label	the	forces	on	your	free-
body	diagram,	and	then	find	the	net	force	directed	toward	the	center	of	the	circle.
That	net	force	is	the	centripetal	force.	But	NEVER	label	a	free-body	diagram
with	“Fc	.”

Exam	tip	from	an	AP	Physics	veteran:
On	a	free-response	question,	do	not	label	a	force	as	“centripetal	force,”	even	if
that	force	does	act	toward	the	center	of	a	circle;	you	will	not	earn	credit.
Rather,	label	with	the	actual	source	of	the	force;	i.e.,	tension,	friction,	weight,
electric	force,	etc.

—Mike,	high	school	junior

Mass	on	a	String

A	block	of	mass	M	=	2	kg	is	swung	on	a	rope	in	a	vertical	circle	of	radius	r
constantspeed	v	.	When	the	block	is	the	circle,	the	tension	in	the	rope	is
measued	to	be	10	N.	What	is	the	tension	in	the	rope	when	the	block	is	at	the
bottom	of	the	circle?



Let’s	begin	by	drawing	a	free-body	diagram	of	the	block	at	the	top	of	the
circle	and	another	of	the	block	at	the	bottom	of	the	circle.

Next,	we	write	Newton’s	second	law	for	each	diagram.	Acceleration	is	always
toward	the	center	of	the	circle.

The	acceleration	is	centripetal,	so	we	can	plug	in	v	2	/r	for	both	accelerations.



At	both	top	and	bottom,	the	speed	v	and	the	radius	r	are	the	same.	So	Mv	2	/r	has
to	be	the	same	at	both	the	top	and	bottom,	allowing	us	to	set	the	left	side	of	each
equation	equal	to	one	another.

With	M	=	2	kg	and	T	top	=	10	N,	we	solve	to	get	T	bottom	=	50	N.

Car	on	a	Curve
This	next	problem	is	a	bit	easier	than	the	last	one,	but	it’s	still	good	practice.

A	car	of	mass	m	travels	around	a	flat	curve	that	has	a	radius	of	curvature	r	.
What	is	the	necessary	coefficient	of	friction	such	that	the	car	can	round	the
curve	with	a	velocity	v	?

Before	we	draw	our	free-body	diagram,	we	should	consider	how	friction	is
acting	in	this	case.	Imagine	this:	what	would	it	be	like	to	round	a	corner	quickly
while	driving	on	ice?	You	would	slide	off	the	road,	right?	Another	way	to	put
that	is	to	say	that	without	friction,	you	would	be	unable	to	make	the	turn.
Friction	provides	the	centripetal	force	necessary	to	round	the	corner.	Bingo!	The
force	of	friction	must	point	in	toward	the	center	of	the	curve.

We	can	now	write	some	equations	and	solve	for	μ	,	the	coefficient	of	friction.
The	net	force	in	the	horizontal	direction	is	F	f	,	which	can	be	set	equal	to

mass	times	(centripetal)	acceleration.



We	also	know	that	F	f	=	μ	N	.	So,

Furthermore,	we	know	that	the	car	is	in	vertical	equilibrium—it	is	neither	flying
off	the	road	nor	being	pushed	through	it—so	F	N	=	mg	.

Solving	for	μ	we	have

Note	that	this	coefficient	doesn’t	depend	on	mass.	Good—if	it	did,	we’d	need
tires	made	of	different	materials	depending	on	how	heavy	the	car	is.

Newton’s	Law	of	Gravitation
We	now	shift	our	focus	to	gravity.	Gravity	is	an	amazing	concept—you	and	the
Earth	attract	each	other	just	because	you	both	have	mass!—but	at	the	level	tested
on	the	AP	exam,	it’s	also	a	pretty	easy	concept.	In	fact,	there	are	only	a	couple
equations	you	need	to	know.	The	first	is	for	gravitational	force:

This	equation	describes	the	gravitational	force	that	one	object	exerts	on	another
object.	m	1	is	the	mass	of	one	of	the	objects,	m	2	is	the	mass	of	the	other	object,	r
is	the	distance	between	the	center	of	mass	of	each	object,	and	G	is	called	the



“Universal	Gravitational	Constant”	and	is	equal	to	6.67	×	10−11	(G	does	have
units—they	are	N·m2	/kg2	—but	most	problems	won’t	require	your	knowing
them).	The	negative	sign	indicates	that	the	force	is	attractive.	We	can	leave	it	off
unless	we	are	doing	calculus	with	the	equation.

The	mass	of	the	Earth,	ME	,	is	5.97	×	1024	kg.	The	mass	of	the	sun,	MS	,	is
1.99	×	1030	kg.	The	two	objects	are	about	154,000,000	km	away	from	each
other.	How	much	gravitational	force	does	Earth	exert	on	the	sun?

This	is	simple	plug-and-chug	(remember	to	convert	km	to	m).

Notice	that	the	amount	of	force	that	the	Earth	exerts	on	the	sun	is	exactly	the
same	as	the	amount	of	force	the	sun	exerts	on	the	Earth.

We	can	combine	our	knowledge	of	circular	motion	and	of	gravity	to	solve
the	following	type	of	problem.

What	is	the	speed	of	the	Earth	as	it	revolves	in	orbit	around	the	sun?

The	force	of	gravity	exerted	by	the	sun	on	the	Earth	is	what	keeps	the	Earth	in
motion—it	is	the	centripetal	force	acting	on	the	Earth.



v	=	29,000	m/s.	(Wow,	fast	…	that	converts	to	about	14	miles	every	second
—much	faster	than,	say,	a	school	bus.)

Along	with	the	equation	for	gravitational	force,	you	need	to	know	the
equation	for	gravitational	potential	energy.

Why	negative?	Objects	tend	get	pushed	toward	the	lowest	available	potential
energy.	A	long	way	away	from	the	sun,	the	r	term	gets	big,	so	the	potential
energy	gets	close	to	zero.	But,	since	a	mass	is	attracted	to	the	sun	by	gravity,	the
potential	energy	of	the	mass	must	get	lower	and	lower	as	r	gets	smaller.

We	bet	you’re	thinking	something	like,	“Now	hold	on	a	minute!	You	said	a
while	back	that	an	object’s	gravitational	potential	energy	equals	mgh	.	What’s
going	on?”

Good	point.	An	object’s	gravitational	PE	equals	mgh	when	that	object	is	near
the	surface	of	the	Earth.	But	it	equals	 	no	matter	where	that	object	is.

Similarly,	the	force	of	gravity	acting	on	an	object	equals	mg	(the	object’s
weight)	only	when	that	object	is	near	the	surface	of	the	Earth.

The	force	of	gravity	on	an	object,	however,	always	equals	 	regardless

of	location.

Kepler’s	Laws



Johannes	Kepler,	the	late	1500s	theorist,	developed	three	laws	of	planetary
motion	based	on	the	detailed	observations	of	Tycho	Brahe.	You	need	to
understand	each	law	and	its	consequences.

1.				Planetary	orbits	are	ellipses,	with	the	sun	at	one	focus	.	Of	course,	we	can
apply	this	law	to	a	satellite	orbiting	Earth,	in	which	case	the	orbit	is	an
ellipse,	with	Earth	at	one	focus.	(We	mean	the	center	of	the	Earth—for	the
sake	of	Kepler’s	laws,	we	consider	the	orbiting	bodies	to	be	point	particles.)
In	the	simple	case	of	a	circular	orbit,	this	law	still	applies	because	a	circle	is
just	an	ellipse	with	both	foci	at	the	center.

2.				An	orbit	sweeps	out	equal	areas	in	equal	times	.	If	you	draw	a	line	from	a
planet	to	the	sun,	this	line	crosses	an	equal	amount	of	area	every	minute	(or
hour,	or	month,	or	whatever)—see	Figure	15.2	.	The	consequence	here	is	that
when	a	planet	is	close	to	the	sun,	it	must	speed	up,	and	when	a	planet	is	far
from	the	sun,	it	must	slow	down.	This	applies	to	the	Earth	as	well.	In	the
northern	hemisphere	winter,	when	the	Earth	is	slightly	closer	to	the	sun,	1	the
Earth	moves	faster	in	its	orbit.	(You	may	have	noticed	that	the	earliest	sunset
in	wintertime	occurs	about	two	weeks	before	the	solstice—this	is	a	direct
consequence	of	Earth’s	faster	orbit.)

Figure	15.2			Kepler’s	second	law.	The	area	“swept	out”	by	a	planet	in	its
orbit	is	shaded.	In	equal	time	intervals	Δt	1	and	Δt	2	,	these	swept	areas	A	1

and	A	2	are	the	same.



3.				A	planet’s	orbital	period	squared	is	proportional	to	its	orbital	radius	cubed	.
In	mathematics,	we	write	this	as	T	2	=	cR	3	.	Okay,	how	do	we	define	the
“radius”	of	a	non-circular	orbit?	Well,	that	would	be	average	distance	from
the	sun.	And	what	is	this	constant	c	?	It’s	a	different	value	for	every	system
of	satellites	orbiting	a	single	central	body.	Not	worth	worrying	about,	except
that	you	can	easily	derive	it	for	the	solar	system	by	solving	the	equation
above	for	c	and	plugging	in	data	from	Earth’s	orbit:	c	=	1	year2	/AU3	,	where
an	“AU”	is	the	distance	from	Earth	to	the	sun.	If	you	really	need	to,	you	can
convert	this	into	more	standard	units,	but	we	wouldn’t	bother	with	this	right
now.

Energy	of	Closed	Orbits
When	an	object	of	mass	m	is	in	orbit	around	the	sun,	its	potential	energy	is	

	,	where	M	is	the	mass	of	the	sun,	and	r	is	the	distance	between	the

centers	of	the	two	masses.
The	kinetic	energy	of	the	orbiting	mass,	of	course,	is	K	=	½mv	2	.	The	total

mechanical	energy	of	the	mass	in	orbit	is	defined	as	U	+	K	.	When	the	mass	is	in
a	stable	orbit,	the	total	mechanical	energy	must	be	less	than	zero.	A	mass	with
positive	total	mechanical	energy	can	escape	the	“gravitational	well”	of	the	sun;	a
mass	with	negative	total	mechanical	energy	is	“bound”	to	orbit	the	sun.	2

All	of	the	above	applies	to	the	planets	orbiting	in	the	solar	system.	It	also
applies	to	moons	or	satellites	orbiting	planets,	when	(obviously)	we	replace	the
“sun”	by	the	central	planet.	A	useful	calculation	using	the	fact	that	total
mechanical	energy	of	an	object	in	orbit	is	the	potential	energy	plus	the	kinetic
energy	is	to	find	the	“escape	speed”	from	the	surface	of	a	planet	…	at	r	equal	to
the	radius	of	the	planet,	set	kinetic	plus	potential	energy	equal	to	zero,	and	solve
for	v	.	This	is	the	speed	that,	if	it	is	attained	at	the	surface	of	the	planet
(neglecting	air	resistance),	will	cause	an	object	to	attain	orbit.

	Practice	Problems
Multiple	Choice:
Questions	1	and	2:



Two	stars,	each	of	mass	M	,	form	a	binary	system.	The	stars	orbit	about	a	point	a
distance	R	from	the	center	of	each	star,	as	shown	in	the	diagram	above.	The	stars
themselves	each	have	radius	r	.

1	.	What	is	the	force	each	star	exerts	on	the	other?

(A)	

(B)	

(C)	

(D)	

(E)	

2	.	In	terms	of	each	star’s	tangential	speed	v	,	what	is	the	centripetal	acceleration
of	each	star?

(A)	

(B)	

(C)	



(D)	

(E)	

Questions	3	and	4:	In	the	movie	Return	of	the	Jedi	,	the	Ewoks	throw	rocks
using	a	circular-motion	device.	A	rock	is	attached	to	a	string.	An	Ewok	whirls
the	rock	in	a	horizontal	circle	above	his	head,	then	lets	go,	sending	the	rock
careening	into	the	head	of	an	unsuspecting	stormtrooper.

3	.	What	force	provides	the	rock’s	centripetal	acceleration?

(A)	The	vertical	component	of	the	string’s	tension
(B)	The	horizontal	component	of	the	string’s	tension
(C)	The	entire	tension	of	the	string
(D)	The	gravitational	force	on	the	rock
(E)	The	horizontal	component	of	the	gravitational	force	on	the	rock

4	.	The	Ewok	whirls	the	rock	and	releases	it	from	a	point	above	his	head	and	to
his	right.	The	rock	initially	goes	straight	forward.	Which	of	the	following
describes	the	subsequent	motion	of	the	rock?

(A)	It	will	continue	in	a	straight	line	forward,	while	falling	due	to	gravity.
(B)	It	will	continue	forward	but	curve	to	the	right,	while	falling	due	to

gravity.
(C)	It	will	continue	forward	but	curve	to	the	left,	while	falling	due	to	gravity.
(D)	It	will	fall	straight	down	to	the	ground.
(E)	It	will	curve	back	toward	the	Ewok	and	hit	him	in	the	head.

5	.	A	Space	Shuttle	orbits	Earth	300	km	above	the	surface.	Why	can’t	the
Shuttle	orbit	10	km	above	Earth?

(A)	The	Space	Shuttle	cannot	go	fast	enough	to	maintain	such	an	orbit.
(B)	Kepler’s	laws	forbid	an	orbit	so	close	to	the	surface	of	the	Earth.
(C)	Because	r	appears	in	the	denominator	of	Newton’s	law	of	gravitation,	the

force	of	gravity	is	much	larger	closer	to	the	Earth;	this	force	is	too	strong
to	allow	such	an	orbit.

(D)	The	closer	orbit	would	likely	crash	into	a	large	mountain	such	as	Everest
because	of	its	elliptical	nature.

(E)	Much	of	the	Shuttle’s	kinetic	energy	would	be	dissipated	as	heat	in	the



atmosphere,	degrading	the	orbit.

Free	Response:

6	.	Consider	two	points	on	a	rotating	turntable:	Point	A	is	very	close	to	the
center	of	rotation,	while	point	B	is	on	the	outer	rim	of	the	turntable.	Both
points	are	shown	above.	A	penny	could	be	placed	on	the	turntable	at	either
point	A	or	point	B	.

(a)	In	which	case	would	the	speed	of	the	penny	be	greater,	if	it	were	placed	at
point	A	,	or	if	it	were	placed	at	point	B	?	Explain.

(b)	At	which	point	would	the	penny	require	the	larger	centripetal	force	to
remain	in	place?	Justify	your	answer.

(c)	Point	B	is	0.25	m	from	the	center	of	rotation.	If	the	coefficient	of	friction
between	the	penny	and	the	turntable	is	μ	=	0.30,	calculate	the	maximum
linear	speed	the	penny	can	have	there	and	still	remain	in	circular	motion.

	Solutions	to	Practice	Problems
1	.	D—	In	Newton’s	law	of	gravitation,

the	distance	used	is	the	distance	between	the	centers	of	the	planets;	here	that
distance	is	2R	.	But	the	denominator	is	squared,	so	(2R	)2	=	4R	2	in	the
denominator	here.



2	.	E—	In	the	centripetal	acceleration	equation

the	distance	used	is	the	radius	of	the	circular	motion.	Here,	because	the
planets	orbit	around	a	point	right	in	between	them,	this	distance	is	simply	R	.

3	.	B—	Consider	the	vertical	forces	acting	on	the	rock.	The	rock	has	weight,	so
mg	acts	down.	However,	because	the	rock	isn’t	falling	down,	something	must
counteract	the	weight.	That	something	is	the	vertical	component	of	the	rope’s
tension.	The	rope	must	not	be	perfectly	horizontal,	then.	Because	the	circle	is
horizontal,	the	centripetal	force	must	be	horizontal	as	well.	The	only
horizontal	force	here	is	the	horizontal	component	of	the	tension.	(Gravity	acts
down	,	last	we	checked,	and	so	cannot	have	a	horizontal	component.)

4	.	A—	Once	the	Ewok	lets	go,	no	forces	(other	than	gravity)	act	on	the	rock.
So,	by	Newton’s	first	law,	the	rock	continues	in	a	straight	line.	Of	course,	the
rock	still	must	fall	because	of	gravity.	(The	Ewok	in	the	movie	who	got	hit	in
the	head	forgot	to	let	go	of	the	string.)

5	.	E—	A	circular	orbit	is	allowed	at	any	distance	from	a	planet,	as	long	as	the
satellite	moves	fast	enough.	At	300	km	above	the	surface	Earth’s	atmosphere
is	practically	nonexistent.	At	10	km,	though,	the	atmospheric	friction	would
quickly	cause	the	Shuttle	to	slow	down.

6	.	(a)	Both	positions	take	the	same	time	to	make	a	full	revolution.	But	point	B
must	go	farther	in	that	same	time,	so	the	penny	must	have	bigger	speed	at
point	B	.

(b)	The	coin	needs	more	centripetal	force	at	point	B	.	The	centripetal	force	is
equal	to	mv	2	/r	.	However,	the	speed	itself	depends	on	the	radius	of	the
motion,	as	shown	in	part	(a)	.	The	speed	of	a	point	at	radius	r	is	the
circumference	divided	by	the	time	for	one	rotation	T,	v	=	2πr	/T	.	So	the
net	force	equation	becomes,	after	algebraic	simplification,	Fnet	=	4mπ2	r	/T
2	.	Because	both	positions	take	equal	times	to	make	a	rotation,	the	coin
with	the	larger	distance	from	the	center	needs	more	centripetal	force.

(c)	The	force	of	friction	provides	the	centripetal	force	here,	and	is	equal	to	μ
times	the	normal	force.	Because	the	only	forces	acting	vertically	are	F	N
and	mg,	F	N	=	mg	.	The	net	force	is	equal	to	mv	2	/r	,	and	also	to	the
friction	force	mmg	.	Setting	these	equal	and	solving	for	v	,



Plug	in	the	values	given	(r	=	0.25	m,	μ	=	0.30)	to	get	v	=	0.87	m/s.	If	the
speed	is	faster	than	this,	then	the	centripetal	force	necessary	to	keep	the
penny	rotating	increases,	and	friction	can	no	longer	provide	that	force.

	Rapid	Review
•			When	an	object	travels	in	a	circle,	its	velocity	vector	is	directed	tangent	to	the
circle,	and	its	acceleration	vector	points	toward	the	center	of	the	circle.

•			A	centripetal	force	keeps	an	object	traveling	in	a	circle.	The	centripetal	force
is	simply	whatever	net	force	is	directed	toward	the	center	of	the	circle	in
which	the	object	is	traveling.

•			Newton’s	law	of	gravitation	states	that	the	gravitational	force	between	two
objects	is	proportional	to	the	mass	of	the	first	object	multiplied	by	the	mass	of
the	second	divided	by	the	square	of	the	distance	between	them.	This	also
means	that	the	gravitational	force	felt	by	one	object	is	the	same	as	the	force
felt	by	the	second	object.

•			Predictions	of	Kepler’s	laws:	Planets	undergo	elliptical	orbits	with	the	sun	at
one	focus;	at	points	in	an	orbit	closer	to	the	sun,	a	planet	moves	faster;	the
smaller	a	planet’s	mean	distance	from	the	sun,	the	shorter	its	orbital	period,	by
T	2	∝	R	3	.	(The	symbol	“∝”	means	“is	proportional	to.”)



1	Please	don’t	say	you	thought	the	Earth	must	be	farther	away	from	the	sun	in	winter	because	it’s	cold.
When	it’s	winter	in	the	United	States,	it’s	summer	in	Australia,	and	we’re	all	the	same	distance	from	the
sun!

2	It	can	be	shown	that	for	a	planet	in	a	stable,	circular	orbit,	the	kinetic	energy	is	half	the	absolute	value
of	the	potential	energy.	This	isn’t	something	important	enough	to	memorize,	but	it	might	help	you	out
sometime	if	you	happen	to	remember.



CHAPTER 	 15

Gravitation	and	Circular	Motion

1	.				A	binary	star	system	consists	of	two	identical	stars	each	with	a	mass	of	M
that	orbit	each	other	about	the	center	of	mass	of	the	system	as	shown.	The
orbital	velocity	of	the	stars	is

(A)			

(B)			

(C)			

(D)			



(E)			

2	.				A	sprinter	runs	around	an	oval	track	at	a	constant	speed,	starting	at	point	A,
proceeding	around	the	track	counterclockwise,	and	returning	to	point	A.
Which	graph	best	represents	the	magnitude	of	the	sprinter’s	acceleration	as
she	runs	one	complete	lap?

(A)			

(B)			

(C)			

(D)			

(E)			



3	.				A	pendulum	of	mass	(m	)	is	swinging	in	a	horizontal	circle	of	radius	(r	)	at	a
constant	rate,	as	shown	in	the	figure.	The	angle	that	the	pendulum	string
makes	with	the	vertical	is	θ,	and	the	tension	of	the	string	is	T	.	Which	of	the
following	statements	concerning	this	arrangement	is	correct?
(A)			The	gravity	force	and	the	tension	cancel	each	other	out.
(B)			The	velocity	of	the	mass	is	constant.
(C)			The	mass	accelerates	in	the	direction	of	the	tension	force.

(D)			The	velocity	of	the	mass	is:	

(E)			The	tension	force	is:	

4	.				A	satellite	in	geosynchronous	orbit	around	Earth	has	an	orbital	time	period
of	T	,	as	shown	in	the	figure.	If	the	mass	of	the	satellite	is	doubled	while
keeping	the	orbital	radius	(R	)	the	same,	the	new	time	period	of	the	satellite’s
orbit	will	be

(A)				

(B)				

(C)				T

(D)				

(E)				2T



	Answers

1	.				E	—Gravity	supplies	the	centripetal	force	that	allows	the	stars	to	orbit,
which	we	find	by	using	the	equation:

2	.				A	—The	sprinter	only	accelerates	when	changing	direction	around	the
curved	portions	of	the	tracks	from	points	A	to	C	and	from	points	D	to	F.

3	.				D	—The	mass	has	a	centripetal	acceleration	toward	the	center	of	the
horizontal	circle.	Thus,	choices	A,	B,	and	C	are	not	correct.	The	vertical
portion	of	tension	must	cancel	out	the	gravity	force:	T	cos	θ	=	mg	.	Thus,
choice	E	is	incorrect.	The	horizontal	portion	of	tension	supplies	the
centripetal	acceleration	toward	the	center	of	the	circular	path:

4	.				C	—Use	the	following	equation	to	calculate	the	orbital	time	period:



The	velocity	of	circular	orbit	is

Substituting	the	velocity	into	the	force	equation,	we	get

Note	that	the	mass	of	the	satellite	is	not	in	the	time	period	equation.	This
means	the	satellite	mass	does	not	influence	the	orbital	time	period	at	all!



CHAPTER 	 16

Rotational	Motion

IN	THIS	CHAPTER

Summary:	The	mechanics	of	rotating	objects	make	up	a	significant	chunk	of	the	AP	Physics	C	exam.	But,
rotational	motion	has	many	direct	analogs	from	linear	motion.	If	you	understand	the	mechanics	unit	from
your	first-year	physics	course,	rotational	motion	can	be	learned	by	analogy.

Key	Ideas
		Rotational	kinematics	uses	essentially	the	same	equations	as	kinematics,	but
distances,	speeds,	and	accelerations	are	rotational	quantities	expressed	with
radians	instead	of	with	meters.
		The	rotational	inertia	defines	an	object’s	resistance	to	rotation.	It	is	the
rotational	analog	of	mass.
		An	object	can	possess	rotational	kinetic	energy	in	addition	to	translational
kinetic	energy.
		Angular	momentum	is	conserved	anytime	no	external	torque	acts	on	a	system
of	objects.	This	includes	planets	in	orbit.

Relevant	Equations

Rotational	kinematics	equations.
First,	for	constant	angular	acceleration:



And,	in	all	cases:

Conversion	between	linear	and	rotational	variables:

Rotational	inertia:

Newton’s	second	law	for	rotation:

Rotational	kinetic	energy:

Angular	momentum:

Okay,	you	now	have	thoroughly	studied	how	an	object	moves;	that	is,	if	the
object	can	be	treated	as	a	point	particle.	But	what	happens	when	an	object	is
spinning?	How	does	that	affect	motion?	Now	is	the	time	to	learn.



You’ll	find	clear	similarities	between	the	material	in	this	chapter	and	what
you	already	know.	In	fact,	you’ll	see	that	every	concept,	every	variable,	every
equation	for	rotational	motion	has	an	analog	in	our	study	of	translational	motion.
The	best	way	to	understand	rotational	motion	is	simply	to	apply	the	concepts	of
linear	motion	to	the	case	of	a	spinning	object.

Rotational	Kinematics
For	an	object	moving	in	a	straight	line,	we	defined	five	variables.

Now	consider	a	fixed	object	spinning,	like	a	compact	disc.	The	relevant
variables	become	the	following:

These	variables	are	related	via	the	following	three	equations.	Obviously,	these
equations	differ	from	the	“star	equations”	used	for	kinematics	…	but	they’re
nonetheless	very	similar:



So	try	this	example:

A	bicycle	has	wheels	with	radius	50	cm.	The	bike	starts	from	rest,	and	the
wheels	speed	up	uniformly	to	200	revolutions	per	minute	in	10	seconds.	How
far	does	the	bike	go?

In	any	linear	kinematics	problem	the	units	should	be	in	meters	and	seconds;	in
rotational	kinematics,	the	units	MUST	be	in	RADIANS	and	seconds.	So	convert
revolutions	per	minute	to	radians	per	second.	To	do	so,	recall	that	there	are	2π
radians	in	every	revolution:

200	rev/min	×	2π	rad/rev	×	1	min/60	s	=	21	rad/s.

Now	identify	variables	in	a	chart:

We	want	to	solve	for	Δθ	because	if	we	know	the	angle	through	which	the	wheel
turns,	we	can	figure	out	how	far	the	edge	of	the	wheel	has	gone.	We	know	we
can	solve	for	Δθ	,	because	we	have	three	of	the	five	variables.	Plug	and	chug
into	the	rotational	kinematics	equations:



What	does	this	answer	mean?	Well,	if	there	are	2π	(that	is,	6.2)	radians	in	one
revolution,	then	105	radians	is	about	17	revolutions	through	which	the	wheel	has
turned.

Now,	because	the	wheel	has	a	radius	of	0.50	m,	the	wheel’s	circumference	is
2πr	=	3.1	m;	every	revolution	of	the	wheel	moves	the	bike	3.1	meters	forward.
And	the	wheel	made	17	revolutions,	giving	a	total	distance	of	about	53	meters.

Is	this	reasonable?	Sure—the	biker	traveled	across	about	half	a	football	field
in	10	seconds.

There	are	a	few	other	equations	you	should	know.	If	you	want	to	figure	out
the	linear	position,	speed,	or	acceleration	of	a	spot	on	a	spinning	object,	or	an
object	that’s	rolling	without	slipping,	use	these	three	equations:

where	r	represents	the	distance	from	the	spot	you’re	interested	in	to	the	center	of
the	object.

So	in	the	case	of	the	bike	wheel	above,	the	top	speed	of	the	bike	was	v	=	(0.5
m)	(21	rad/s)	=	11	m/s,	or	about	24	miles	per	hour—reasonable	for	an	average
biker.	Note:	To	use	these	equations,	angular	variable	units	must	involve	radians,
not	degrees	or	revolutions!!!

The	rotational	kinematics	equations,	just	like	the	linear	kinematics	equations,
are	only	valid	when	acceleration	is	constant.	If	acceleration	is	changing,	then	the
same	calculus	equations	that	were	used	for	linear	kinematics	apply	here:



Rotational	Inertia
Newton’s	second	law	states	that	F	net	=	ma	;	this	tells	us	that	the	greater	the	mass
of	an	object,	the	harder	it	is	to	accelerate.	This	tendency	for	massive	objects	to
resist	changes	in	their	velocity	is	referred	to	as	inertia.

Well,	spinning	objects	also	resist	changes	in	their	angular	velocity.	But	that
resistance,	that	rotational	inertia,	depends	less	on	the	mass	of	an	object	than	on
how	that	mass	is	distributed.	For	example,	a	baseball	player	often	warms	up	by
placing	a	weight	on	the	outer	end	of	the	bat—this	makes	the	bat	more	difficult	to
swing.	But	he	does	not	place	the	weight	on	the	bat	handle,	because	extra	weight
in	the	handle	hardly	affects	the	swing	at	all.

The	rotational	inertia,	I	,	is	the	rotational	equivalent	of	mass.	It	tells	how
difficult	it	is	for	an	object	to	speed	up	or	slow	its	rotation.	For	a	single	particle	of
mass	m	a	distance	r	from	the	axis	of	rotation,	the	rotational	inertia	is

To	find	the	rotational	inertia	of	several	masses—for	example,	two	weights
connected	by	a	thin,	light	rod—just	add	the	I	due	to	each	mass.

For	a	complicated,	continuous	body,	like	a	sphere	or	a	disk,	I	can	be
calculated	through	integration:



Exam	tip	from	an	AP	Physics	veteran:
On	the	AP	exam,	you	will	only	very	occasionally	have	to	use	calculus	to
derive	a	rotational	inertia.	Usually	you	will	either	be	able	to	sum	the	I	due	to
several	masses,	or	you	will	be	given	I	for	the	object	in	question.

—Joe,	college	physics	student	and	Physics	C	alumnus

Newton’s	Second	Law	for	Rotation
For	linear	motion,	Newton	says	F	net	=	ma	;	for	rotational	motion,	the	analog	to
Newton’s	second	law	is

where	t	net	is	the	net	torque	on	an	object.	Perhaps	the	most	common	application
of	this	equation	involves	pulleys	with	mass.

A	2.0-kg	block	on	a	smooth	table	is	connected	to	a	hanging	3.0-kg	block	with
a	light	string.	This	string	passes	over	a	pulley	of	mass	0.50	kg,	as	shown	in	the
diagram	below.	Determine	the	acceleration	of	the	masses.	(The	rotational
inertia	for	a	solid	disc	of	mass	m	and	radius	r	is	½mr	2	.)



We	learned	how	to	approach	this	type	of	problem	in	Chapter	12	—draw	a	free-
body	diagram	for	each	block,	and	use	F	net	=	ma	.	So	we	start	that	way.

The	twist	in	this	problem	is	the	massive	pulley,	which	causes	two	changes	in
the	problem-solving	approach:

1.				We	have	to	draw	a	free-body	diagram	for	the	pulley	as	well	as	the	blocks.
Even	though	it	doesn’t	move,	it	still	requires	torque	to	accelerate	its	spinning
speed.

2.				We	oversimplified	things	in	Chapter	12	when	we	said,	“One	rope	=	one
tension.”	The	Physics	C	corollary	to	this	rule	says,	“…	unless	the	rope	is
interrupted	by	a	mass.”	Because	the	pulley	is	massive,	the	tension	in	the	rope
may	be	different	on	each	side	of	the	pulley.

The	Physics	C	corollary	means	that	the	free-body	diagrams	indicate	T	1	and	T	2	,
which	must	be	treated	as	different	variables.	The	free-body	diagram	for	the
pulley	includes	only	these	two	tensions:

Now,	we	write	Newton’s	second	law	for	each	block:



For	the	pulley,	because	it	is	rotating	,	we	write	Newton’s	second	law	for	rotation.
The	torque	provided	by	each	rope	is	equal	to	the	tension	in	the	rope	times	the
distance	to	the	center	of	rotation;	that	is,	the	radius	of	the	pulley.	(We’re	not
given	this	radius,	so	we’ll	just	call	it	R	for	now	and	hope	for	the	best.)

The	acceleration	of	each	block	must	be	the	same	because	they’re	connected	by	a
rope;	the	linear	acceleration	of	a	point	on	the	edge	of	the	pulley	must	also	be	the
same	as	that	of	the	blocks.	So,	in	the	pulley	equation,	replace	a	by	a	/R	.	Check	it
out,	all	the	R	terms	cancel!	Thank	goodness,	too,	because	the	radius	of	the	pulley
wasn’t	even	given	in	the	problem.

The	pulley	equation,	thus,	simplifies	to

Now	we’re	left	with	an	algebra	problem:	three	equations	and	three	variables	(T	1
,	T	2	,	and	a	).	Solve	using	addition	or	substitution.	Try	adding	the	first	two
equations	together—this	gives	a	T	1	−	T	2	term	that	meshes	nicely	with	the	third
equation.

The	acceleration	turns	out	to	be	5.6	m/s2	.	If	you	do	the	problem	neglecting
the	mass	of	the	pulley	(try	it!)	you	get	5.9	m/s2	.	This	makes	sense—the	more
massive	the	pulley,	the	harder	it	is	for	the	system	of	masses	to	speed	up.

Rotational	Kinetic	Energy
The	pulley	in	the	last	example	problem	had	kinetic	energy—it	was	moving,	after
all—but	it	didn’t	have	linear	kinetic	energy,	because	the	velocity	of	its	center	of
mass	was	zero.	When	an	object	is	rotating,	its	rotational	kinetic	energy	is	found
by	the	following	equation:



Notice	that	this	equation	is	very	similar	to	the	equation	for	linear	kinetic	energy.
But,	because	we’re	dealing	with	rotation	here,	we	use	rotational	inertia	in	place
of	mass	and	angular	velocity	in	place	of	linear	velocity.

If	an	object	is	moving	linearly	at	the	same	time	that	it’s	rotating,	its	total
kinetic	energy	equals	the	sum	of	the	linear	KE	and	the	rotational	KE.

Let’s	put	this	equation	into	practice.	Try	this	example	problem.

A	ball	of	mass	m	sits	on	an	inclined	plane,	with	its	center	of	mass	at	a	height	h
above	the	ground.	It	is	released	from	rest	and	allowed	to	roll	without	slipping
down	the	plane.	What	is	its	velocity	when	it	reaches	the	ground?	I	ball	=	(
)mr	2	.

This	is	a	situation	you’ve	seen	before,	except	there’s	a	twist:	this	time,	when	the
object	moves	down	the	inclined	plane,	it	gains	both	linear	and	rotational	kinetic
energy.	However,	it’s	still	just	a	conservation	of	energy	problem	at	heart.
Initially,	the	ball	just	has	gravitational	potential	energy,	and	when	it	reaches	the
ground,	it	has	both	linear	kinetic	and	rotational	kinetic	energy.

A	bit	of	algebra,	and	we	find	that



If	the	ball	in	this	problem	hadn’t	rolled	down	the	plane—if	it	had	just	slid—its
final	velocity	would	have	been	 	.	(Don’t	believe	us?	Try	the	calculation
yourself	for	practice!)	So	it	makes	sense	that	the	final	velocity	of	the	ball	when	it
does	roll	down	the	plane	is	less	than	 	;	only	a	fraction	of	the	initial
potential	energy	is	converted	to	linear	kinetic	energy.

Angular	Momentum	and	Its	Conservation
It	probably	won’t	surprise	you	by	this	point	that	momentum,	too,	has	a	rotational
form.	It’s	called	angular	momentum	(abbreviated,	oddly,	as	L	),	and	it	is	found
by	this	formula:

This	formula	makes	intuitive	sense.	If	you	think	of	angular	momentum	as,
roughly,	the	amount	of	effort	it	would	take	to	make	a	rotating	object	stop
spinning,	then	it	should	seem	logical	that	an	object	with	a	large	rotational	inertia
or	with	a	high	angular	velocity	(or	both)	would	be	pretty	tough	to	bring	to	rest.

For	a	point	particle,	this	formula	can	be	rewritten	as

where	v	is	linear	velocity,	and	r	is	either	(1)	the	radius	of	rotation,	if	the	particle
is	moving	in	a	circle,	or	(2)	distance	of	closest	approach	if	the	particle	is	moving
in	a	straight	line.	(See	Figure	16.1	.)



Figure	16.1			Angular	momentum.

Wait	a	minute!	How	can	an	object	moving	in	a	straight	line	have	angular
momentum?!?	Well,	for	the	purposes	of	the	AP	exam,	it	suffices	just	to	know
that	if	a	particle	moves	in	a	straight	line,	then	relative	to	some	point	P	not	on	that
line,	the	particle	has	an	angular	momentum.	But	if	you	want	a	slightly	more
satisfying—if	less	precise—explanation,	consider	this	image.	You’re	standing
outside	in	an	open	field,	and	an	airplane	passes	high	overhead.	You	first	see	it
come	over	the	horizon	far	in	front	of	you,	then	it	flies	toward	you	until	it’s
directly	over	where	you’re	standing,	and	then	it	keeps	flying	until	it	finally
disappears	beneath	the	opposite	horizon.	Did	the	plane	fly	in	an	arc	over	your
head	or	in	a	straight	path?	It	would	be	hard	for	you	to	tell,	right?	In	other	words,
when	a	particle	moves	in	a	straight	line,	an	observer	who’s	not	on	that	line	would
think	that	the	particle	sort	of	looked	like	it	were	traveling	in	a	circle.

As	with	linear	momentum,	angular	momentum	is	conserved	in	a	closed
system;	that	is,	when	no	external	torques	act	on	the	objects	in	the	system.
Among	the	most	famous	examples	of	conservation	of	angular	momentum	is	a
satellite’s	orbit	around	a	planet.	As	shown	in	Figure	16.2	,	a	satellite	will	travel
in	an	elliptical	orbit	around	a	planet.	This	means	that	the	satellite	is	closer	to	the
planet	at	some	times	than	at	others.

Figure	16.2			Elliptical	orbit.



Obviously,	at	point	A	,	the	satellite	is	farther	from	the	center	of	rotation	than	at
point	B	.	Conservation	of	angular	momentum	tells	us	that,	correspondingly,	the
angular	speed	at	point	A	must	be	less	than	at	point	B	.	1

The	other	really	famous	example	of	conservation	of	angular	momentum
involves	a	spinning	figure	skater.	When	a	skater	spinning	with	his	or	her	arms
outstretched	suddenly	brings	the	arms	in	close	to	the	body,	the	speed	of	rotation
dramatically	increases.	Rotational	inertia	decreased,	so	angular	speed	increased.

You	can	demonstrate	this	phenomenon	yourself!	Sit	in	a	desk	chair	that
spins,	and	with	your	legs	outstretched,	push	off	forcefully	and	start	spinning.
Then	tuck	in	your	feet.	Dizzying,	isn’t	it?

	Practice	Problems
Multiple	Choice:

1	.	All	of	the	objects	mentioned	in	the	choices	below	have	the	same	total	mass
and	length.	Which	has	the	greatest	rotational	inertia	about	its	midpoint?

(A)	a	very	light	rod	with	heavy	balls	attached	at	either	end
(B)	a	uniform	rod
(C)	a	nonuniform	rod,	with	the	linear	density	increasing	from	one	end	to	the

other
(D)	a	nonuniform	rod,	with	the	linear	density	increasing	from	the	middle	to

the	ends
(E)	a	very	light	rod	with	heavy	balls	attached	near	the	midpoint

2	.	A	pool	ball	is	struck	at	one	end	of	the	table;	it	moves	at	constant	speed	to	the
far	end	of	the	table.	A	camera	is	mounted	at	the	side	pocket	at	the	table’s
midpoint,	as	shown.	From	the	camera’s	point	of	view,	the	pool	ball	travels



from	right	to	left.	At	which	point	in	its	motion	does	the	ball	have	the	greatest
angular	momentum	about	the	camera’s	position?

(A)	when	the	ball	was	first	struck
(B)	at	the	midpoint	of	the	table
(C)	the	angular	momentum	is	the	same	throughout	the	motion
(D)	at	the	far	end	of	the	table
(E)	one-quarter	of	the	way	across	the	table,	and	then	again	three-quarters	of

the	way	across	the	table

3	.	A	ladder	of	length	L	leans	against	a	wall	at	an	angle	of	θ	from	the	horizontal,
as	shown	above.	The	normal	force	FN	applied	from	the	ground	on	the	ladder
applies	what	torque	about	the	ladder’s	center	of	mass?

(A)	FN	·(L	/2)
(B)	FN	·L	cos	θ
(C)	FN	·L	sin	θ
(D)	FN	·(L	/2)	cos	θ
(E)	FN	·(L	/2)	sin	θ

4	.	The	front	wheel	on	an	ancient	bicycle	has	a	radius	of	0.5	m.	It	moves	with
angular	velocity	given	by	the	function	ω	(t	)	=	2	+	4t	2	,	where	t	is	in	seconds.
About	how	far	does	the	bicycle	move	between	t	=	2	and	t	=	3	seconds?

(A)	36	m
(B)	27	m
(C)	21	m
(D)	14	m



(E)	7	m

Free	Response:

5	.	A	stick	of	mass	M	and	length	L	is	pivoted	at	one	end.	A	small	mass	m	<<	M
is	attached	to	the	right-hand	end	of	the	stick.	The	stick	is	held	horizontally
and	released	from	rest.

(a)	Given	that	the	rotational	inertia	of	a	uniform	rod	pivoted	around	one	end
is	(1/3)ML	2	,	determine	the	rotational	inertia	of	the	described	contraption.

(b)	Calculate	the	angular	velocity	of	the	contraption	when	it	reaches	a	vertical
position.

(c)	Calculate	the	linear	velocity	of	the	small	mass	m	when	it	is	at	its	lowest
position.

(d)	The	figure	below	represents	the	stick	at	its	lowest	position.	On	this	figure,
draw	a	vector	to	represent	the	net	force	on	the	rod’s	center	of	mass	at	this
point.	Justify	your	answer.



	Solutions	to	Practice	Problems
1	.	A—	The	farther	the	mass	from	the	midpoint,	the	larger	its	contribution	to	the
rotational	inertia.	In	choice	A	the	mass	is	as	far	as	possible	from	the	midpoint;
because	all	items	have	the	same	mass,	A	must	have	the	largest	I	.

2	.	C—	The	angular	momentum	of	a	point	particle	moving	in	a	straight	line
about	a	position	near	the	particle	is	mvr	,	where	r	is	the	distance	of	closest
approach.	This	value	is	constant	as	long	as	the	particle	keeps	going	in	a
straight	line,	which	our	pool	ball	does.

3	.	D—	Torque	is	force	times	the	distance	to	the	fulcrum.	The	force	in	question
is	FN	,	and	acts	straight	up	at	the	base	of	the	ladder.	The	distance	used	is	the
distance	perpendicular	to	the	normal	force;	this	must	be	(L	/2)	cos	θ	,	as
shown	below:

4	.	D—	The	angular	position	function	is	given	by	the	integral	of	the	angular
velocity	function	with	respect	to	time.	The	limits	on	the	integral	are	2	and	3
seconds:

this	evaluates	to	approximately	27	radians.	Using	x	=	rθ	,	the	distance	traveled
is	closest	to	14	m.

5	.	(a) The	rotational	inertia	of	the	entire	contraption	is	the	sum	of	the	moments
of	inertia	for	each	part.	I	for	the	rod	is	given;	I	for	a	point	mass	a	distance
L	from	the	pivot	is	mL	2	.	So,	I	total	=	(1/3)ML	2	+	m	L2	.	Be	sure	to



differentiate	between	M	and	m	.
(b)	Rotational	kinematics	won’t	work	here	because	angular	acceleration	isn’t

constant.	We	must	use	energy.

U1	+	E1	=	U2	+	K2

Define	U	=	0	at	the	bottom	of	the	contraption	when	it	hangs	vertically.	Then,
U	2	is	only	caused	by	the	rod’s	mass,	which	is	concentrated	L	/2	above	the
zero	point,	so	U	2	=	MgL	/2.	U	1	is	due	to	all	of	the	mass,	concentrated	L
above	the	zero	point:	U	1	=	(M	+	m	)gL	.	K1	=	0,	and	K2	is	unknown.

(M	+	m	)gL	+	0	=	MgL	/2	+	½	Iω	)2.

Plug	in	I	from	part	(a	)	and	solve	for	ω	to	get

(c)	Just	use	v	=	rω	.	Here	r	=	L	because	the	center	of	rotation	is	L	away	from
the	mass.

(d)	At	this	position,	the	mass	is	instantaneously	in	uniform	circular	motion.
So,	acceleration	(and	therefore	net	force)	must	be	centripetal.	Net	force	is
straight	up,	toward	the	center	of	rotation.

	Rapid	Review
•			Rotational	kinematics	is	very	similar	to	linear	kinematics.	But	instead	of
linear	velocity,	you	work	with	angular	velocity	(in	radians/s);	instead	of	linear



acceleration,	you	work	with	angular	acceleration	(in	radians/s2	);	and	instead
of	linear	displacement,	you	work	with	angular	displacement	(in	radians).

•			When	doing	rotation	problems,	work	in	radians,	not	degrees.

•			Rotational	inertia	is	the	rotational	equivalent	of	mass—it’s	a	measure	of	how
difficult	it	is	to	start	or	stop	an	object	spinning.

•			The	rotational	equivalent	of	Newton’s	second	law	says	that	the	NET	torque	on
an	object	equals	that	object’s	rotational	inertia	multiplied	by	its	angular
acceleration.

•			To	solve	problems	involving	a	massive	pulley,	make	sure	you	draw	a	free-
body	diagram	of	the	pulley.	Also,	when	a	rope	passes	over	a	massive	pulley,
the	tension	in	the	rope	on	one	side	of	the	pulley	won’t	be	the	same	as	the
tension	on	the	other	side.

•			The	total	kinetic	energy	of	a	rolling	object	is	equal	to	the	sum	of	its	linear
kinetic	energy	and	its	rotational	kinetic	energy.

•			Angular	momentum	in	a	closed	system	is	conserved.	An	object	doesn’t
necessarily	need	to	travel	in	a	circle	to	have	angular	momentum.



1	Note	the	consistency	with	Kepler’s	law	of	equal	areas	in	equal	times,	as	discussed	in	Chapter	15	.



CHAPTER 	 16

Rotational	Motion
1	.				A	machine	used	to	manufacture	smartphone	cases	has	a	gear	that	rotates

according	to	the	following	equation:	θ	=	2.5	+	6.4t	-	4.4t	2	.	What	is	the
angular	acceleration	of	the	gear	at	a	time	of	1s?

(A)			–8.8	rad/s2

(B)			–4.4	rad/s2

(C)			–2.4	rad/s2

(D)			4.5	rad/s2

(E)			6.4	rad/s2

2	.				A	child	stands	on	a	rotating	platform	at	point	A,	as	shown	in	the	figure.	The
platform	is	rotating	at	a	constant	rate	of	ω	when	the	child	begins	walking
along	the	radius	of	the	platform	to	point	B.	Which	of	the	following
statements	explains	the	changes	in	the	rotational	velocity	of	the	platform?
(A)			The	angular	velocity	will	increase	as	predicted	by	conservation	of

angular	momentum.



(B)			The	angular	velocity	will	increase	as	predicted	by	conservation	of
energy.

(C)			The	angular	velocity	will	remain	the	same	as	predicted	by	conservation
of	energy.

(D)			The	angular	velocity	will	decrease	as	predicted	by	conservation	of
angular	momentum.

(E)			The	angular	velocity	will	decrease	as	predicted	by	conservation	of
kinetic	energy.

3	.				A	block	of	mass	(m)	and	a	sphere	of	mass	(m)	with	a	radius	of	R	are
propelled	up	inclines	of	the	same	shape	with	identical	velocities	(v	).	The
block	moves	up	a	frictionless	incline,	while	the	sphere’s	incline	has	enough
friction	so	that	the	sphere	rolls	without	slipping.	The	initial	velocity	is	large
enough	that	both	fly	off	the	upper	end	of	the	inclines	and	land	some	distance
away	to	the	right,	as	shown	in	the	figure.	Which	of	the	following	statements
is	correct?
(A)			The	block	will	land	farther	to	the	right	because	the	friction	acting	on	the

sphere	does	negative	work,	causing	the	sphere	to	lose	mechanical
energy.

(B)			The	block	and	sphere	land	the	same	distance	to	the	right	because	after
leaving	the	incline,	both	accelerate	downward	at	the	same	9.8	m/s2	.

(C)			The	block	and	sphere	land	the	same	distance	to	the	right	because	the
horizontal	velocity	of	both	remains	constant	after	leaving	the	incline.

(D)			The	block	and	sphere	land	the	same	distance	to	the	right	because	both
gain	the	same	gravitational	potential	energy	moving	up	the	incline.

(E)			The	sphere	will	travel	farther	because	it	loses	less	translational	kinetic
energy	moving	up	the	incline	than	the	block.



4	.				A	compound	pulley	consists	of	two	discs	of	radius	(R	)	and	(2R	)	that	are
connected	and	rotate	freely	about	a	horizontal	axle.	The	total	rotational
inertia	of	the	pulley	is	I	.	Two	masses	are	connected	to	the	pulley	by	light
strings,	as	shown	in	the	figure.	When	the	masses	are	released,	the	angular
acceleration	of	the	pulley	will	be

(A)			

(B)			

(C)			

(D)			

(E)			

	Answers

1	.				A	—The	acceleration	of	the	gear	is	found	by	taking	the	second	derivative	of
the	angular	position	equation:



Thus,	the	angular	acceleration	of	the	gear	is	constant	at	–8.8	rad/s2	.

2	.				D	—Conservation	of	angular	momentum	predicts	that	the	angular	velocity
will	decrease	as	the	moment	of	inertia	increases	when	the	child	walks	away
from	the	center	toward	the	perimeter	of	the	platform.	Kinetic	energy	is	not
conserved	because	work	is	done	in	changing	the	shape	of	the	child-platform
system	as	the	child	walks	to	the	outer	edge.

3	.				E	—First	of	all,	the	sphere	does	not	lose	energy	to	friction	because	it	is
rolling	without	slipping.	Second,	the	block	has	only	translational	kinetic

energy	 	,	while	the	sphere	has	the	same	value	of	translational

kinetic	energy	PLUS	rotational	kinetic	energy	as	well:	

.	While	moving	up	the	incline,	both	block	and	sphere	transfer	kinetic	energy
to	gravitational	potential	energy.	However,	all	of	this	gravitational	potential
energy	comes	exclusively	from	the	block’s	translational	kinetic	energy,
slowing	it	down	more	than	the	sphere,	which	has	rotational	kinetic	energy	to
surrender	to	gravitational	potential	energy.	Thus,	the	sphere	leaves	the
incline	at	a	higher	velocity	and	travels	farther	than	the	block.

4	.				C	—Using	Newton’s	second	law	applied	to	rotational	dynamics,	we	get



CHAPTER 	 17

Simple	Harmonic	Motion

IN	THIS	CHAPTER

Summary:	An	object	whose	position–time	graph	makes	a	sine	or	cosine	function	is	in	simple	harmonic
motion.	The	period	of	such	motion	can	be	calculated.

Key	Ideas
		There	are	three	conditions	for	something	to	be	in	simple	harmonic	motion.	All
are	equivalent.

1.	The	object’s	position–time	graph	is	a	sine	or	cosine	graph.
2.	The	restoring	force	on	the	object	is	proportional	to	its	displacement
from	equilibrium.

3.	The	energy	vs.	position	graph	is	parabolic,	or	nearly	so.

		The	mass	on	a	spring	is	the	most	common	example	of	simple	harmonic
motion.
		The	pendulum	is	in	simple	harmonic	motion	for	small	amplitudes.

Relevant	Equations
Period	of	a	mass	on	a	spring:



Period	of	a	pendulum:

Relationship	between	period	and	frequency:

What’s	so	simple	about	simple	harmonic	motion	(SHM)?	Well,	the	name
actually	refers	to	a	type	of	movement—regular,	back	and	forth,	and	tick-tock
tick-tock	kind	of	motion.	It’s	simple	compared	to,	say,	a	system	of	25	springs
and	masses	and	pendulums	all	tied	to	one	another	and	waggling	about
chaotically.

The	other	reason	SHM	is	simple	is	that,	on	the	AP	exam,	there	are	only	a
limited	number	of	situations	in	which	you’ll	encounter	it.	Which	means	only	a
few	formulas	to	memorize,	and	only	a	few	types	of	problems	to	really	master.
We	hope	you’ll	agree	that	most	of	this	material	is,	relatively,	simple.

Amplitude,	Period,	and	Frequency
Simple	harmonic	motion	is	the	study	of	oscillations.	An	oscillation	is	motion	of
an	object	that	regularly	repeats	itself	over	the	same	path.	For	example,	a
pendulum	in	a	grandfather	clock	undergoes	oscillation:	it	travels	back	and	forth,
back	and	forth,	back	and	forth	…	Another	term	for	oscillation	is	“periodic
motion.”

Objects	undergo	oscillation	when	they	experience	a	restoring	force	.	This	is
a	force	that	restores	an	object	to	the	equilibrium	position.	In	the	case	of	a



grandfather	clock,	the	pendulum’s	equilibrium	position—the	position	where	it
would	be	if	it	weren’t	moving—is	when	it’s	hanging	straight	down.	When	it’s
swinging,	gravity	exerts	a	restoring	force:	as	the	pendulum	swings	up	in	its	arc,
the	force	of	gravity	pulls	on	the	pendulum,	so	that	it	eventually	swings	back
down	and	passes	through	its	equilibrium	position.	Of	course,	it	only	remains	in
its	equilibrium	position	for	an	instant,	and	then	it	swings	back	up	the	other	way.
A	restoring	force	doesn’t	need	to	bring	an	object	to	rest	in	its	equilibrium
position;	it	just	needs	to	make	that	object	pass	through	an	equilibrium	position.

If	you	look	back	at	the	chapter	on	conservation	of	energy	(Chapter	14	),
you’ll	find	the	equation	for	the	force	exerted	by	a	spring,	F	=	−kx	.	The	negative
sign	simply	signifies	that	F	is	a	restoring	force:	It	tries	to	pull	or	push	whatever
is	on	the	end	of	the	spring	back	to	the	spring’s	equilibrium	position.	So	if	the
spring	is	stretched	out,	the	restoring	force	tries	to	squish	it	back	in,	and	if	the
spring	is	compressed,	the	restoring	force	tries	to	stretch	it	back	out.

One	repetition	of	periodic	motion	is	called	a	cycle	.	For	the	pendulum	of	a
grandfather	clock,	one	cycle	is	equal	to	one	back-and-forth	swing.

The	maximum	displacement	from	the	equilibrium	position	during	a	cycle	is
the	amplitude	.	In	Figure	17.1	,	the	equilibrium	position	is	denoted	by	“0,”	and
the	maximum	displacement	of	the	object	on	the	end	of	the	spring	is	denoted	by
“A	.”

Figure	17.1			Periodic	motion	of	a	mass	connected	to	a	spring.

The	time	it	takes	for	an	object	to	pass	through	one	cycle	is	the	period,
abbreviated	T	.	Going	back	to	the	grandfather	clock	example,	the	period	of	the
pendulum	is	the	time	it	takes	to	go	back	and	forth	once:	one	second.	Period	is



related	to	frequency,	which	is	the	number	of	cycles	per	second.	The	frequency	of
the	pendulum	of	the	grandfather	clock	is	f	=	1	cycle/s,	where	f	is	the	standard
abbreviation	for	frequency;	the	unit	of	frequency,	the	cycle	per	second,	is	called
a	hertz,	abbreviated	Hz.	Period	and	frequency	are	related	by	this	equation:

Vibrating	Mass	on	a	Spring
A	mass	attached	to	the	end	of	a	spring	will	oscillate	in	simple	harmonic	motion.
The	period	of	the	oscillation	is	found	by	this	equation:

In	this	equation,	m	is	the	mass	of	the	object	on	the	spring,	and	k	is	the	“spring
constant.”	As	far	as	equations	go,	this	is	one	of	the	more	difficult	ones	to
memorize,	but	once	you	have	committed	it	to	memory,	it	becomes	very	simple	to
use.

A	block	with	a	mass	of	10	kg	is	placed	on	the	end	of	a	spring	that	is	hung	from
the	ceiling.	When	the	block	is	attached	to	the	spring,	the	spring	is	stretched	out
20	cm	from	its	rest	position.	The	block	is	then	pulled	down	an	additional	5	cm
and	released.	What	is	the	block’s	period	of	oscillation,	and	what	is	the	speed	of
the	block	when	it	passes	through	its	rest	position?



Let’s	think	about	how	to	solve	this	problem	methodically.	We	need	to	find	two
values,	a	period	and	a	speed.	Period	should	be	pretty	easy—all	we	need	to	know
is	the	mass	of	the	block	(which	we’re	given)	and	the	spring	constant,	and	then
we	can	plug	into	the	formula.	What	about	the	speed?	That’s	going	to	be	a
conservation	of	energy	problem—potential	energy	in	the	stretched-out	spring
gets	converted	to	kinetic	energy—and	here	again,	to	calculate	the	potential
energy,	we	need	to	know	the	spring	constant.	So	let’s	start	by	calculating	that.

First,	we	draw	our	free-body	diagram	of	the	block.

We’ll	call	“up”	the	positive	direction.	Before	the	mass	is	oscillating,	the	block	is
in	equilibrium,	so	we	can	set	Fs	equal	to	mg	.	(Remember	to	convert	centimeters
to	meters!)

Now	that	we	have	solved	for	k	,	we	can	go	on	to	the	rest	of	the	problem.	The



period	of	oscillation	can	be	found	by	plugging	into	our	formula.

To	compute	the	velocity	at	the	equilibrium	position,	we	can	now	use
conservation	of	energy.

K	a	+	Ua	=	K	b	+	Ub

When	dealing	with	a	vertical	spring,	it	is	best	to	define	the	rest	position	as	x	=	0
in	the	equation	for	potential	energy	of	the	spring.	If	we	do	this,	then	gravitational
potential	energy	can	be	ignored.	Yes,	gravity	still	acts	on	the	mass,	and	the	mass
changes	gravitational	potential	energy.	So	what	we’re	really	doing	is	taking
gravity	into	account	in	the	spring	potential	energy	formula	by	redefining	the	x	=
0	position,	where	the	spring	is	stretched	out,	as	the	resting	spot	rather	than	where
the	spring	is	unstretched.

In	the	equation	above,	we	have	used	a	subscript	“a	”	to	represent	values
when	the	spring	is	stretched	out	the	extra	5	cm,	and	“b	”	to	represent	values	at
the	rest	position.

When	the	spring	is	stretched	out	the	extra	5	cm,	the	block	has	no	kinetic
energy	because	it	is	being	held	in	place.	So,	the	KE	term	on	the	left	side	of	the
equation	will	equal	0.	At	this	point,	all	of	the	block’s	energy	is	entirely	in	the
form	of	potential	energy.	(The	equation	for	the	PE	of	a	spring	is	1	/	2	kx	2	,
remember?)	And	at	the	equilibrium	position,	the	block’s	energy	will	be	entirely
in	the	form	of	kinetic	energy.	Solving,	we	have



Pendulums

Simple	Pendulums
Problems	that	involve	simple	pendulums—in	other	words,	basic,	run-of-the-mill,
grandfather	clock–style	pendulums—are	actually	really	similar	to	problems	that
involve	springs.	For	example,	the	formula	for	the	period	of	a	simple	pendulum	is
this:

Looks	kind	of	like	the	period	of	a	mass	on	a	spring,	right?	In	this	equation,	L	is
the	length	of	the	pendulum,	and	g	is	the	acceleration	attributable	to	gravity
(about	10	m/s2	).	Of	course,	if	your	pendulum	happens	to	be	swinging	on	another
planet,	g	will	have	a	different	value.	1

One	interesting	thing	about	this	equation:	the	period	of	a	pendulum	does	not
depend	on	the	mass	of	whatever	is	hanging	on	the	end	of	the	pendulum.	So	if
you	had	a	pendulum	of	length	L	with	a	peanut	attached	to	the	end,	and	another
pendulum	of	length	L	with	an	elephant	attached	to	the	end,	both	pendulums
would	have	the	same	period	in	the	absence	of	air	resistance.

A	string	with	a	bowling	ball	tied	to	its	end	is	attached	to	the	ceiling.	The	string
is	pulled	back	such	that	it	makes	a	10°	angle	with	the	vertical,	and	it	is	then
released.	When	the	bowling	ball	reaches	its	lowest	point,	it	has	a	speed	of	2
m/s.	What	is	the	frequency	of	this	bowling	ball	pendulum?



To	calculate	the	period	of	this	pendulum,	we	must	know	the	length	of	the	string.
We	can	calculate	this	using	conservation	of	energy.	Then,	we’ll	convert	the
period	to	a	frequency.

Before	the	string	is	released,	all	of	the	bowling	ball’s	energy	is	in	the	form	of
gravitational	PE.	If	we	define	the	zero	of	potential	to	be	at	the	ball’s	lowest
point,	then	at	that	point	all	the	bowling	ball’s	energy	is	in	the	form	of	KE.	We
will	use	a	subscript	“a	”	to	represent	values	before	the	bowling	ball	is	released
and	“b	”	to	represent	values	when	the	bowling	ball	is	at	its	lowest	point.

The	height	of	the	bowling	ball	before	it	is	released,	ha	,	can	be	calculated	using
trigonometry.



So,	getting	back	to	our	previous	equation,	we	have

We	know	θ	and	we	know	v	b	,	so	we	can	solve	for	L	.

Now	that	we	know	L	,	we	can	find	the	frequency.

The	Sinusoidal	Nature	of	SHM	and	the	Second-Order	Differential
Equation
Consider	the	force	acting	on	an	object	in	simple	harmonic	motion:	F	net	=	−kx	.
Well,	F	net	=	ma	,	and	acceleration	is	the	second	derivative	of	position.	So	the
equation	for	the	motion	of	the	pendulum	becomes



This	type	of	equation	is	called	a	differential	equation,	where	a	derivative	of	a
function	is	proportional	to	the	function	itself.	Specifically,	since	the	second
derivative	is	involved,	this	is	called	a	“second-order”	differential	equation.

You	don’t	necessarily	need	to	be	able	to	solve	this	equation	from	scratch.
However,	you	should	be	able	to	verify	that	the	solution	x	=	A	cos(wt	)	satisfies
the	equation,	where

(How	do	you	verify	this?	Take	the	first	derivative	to	get	dx	/dt	=	−Aω	sin(ωt	);
then	take	the	second	derivative	to	get	−Aω	2	cos(ωt	).	This	second	derivative	is,
in	fact,	equal	to	the	original	function	multiplied	by	−k	/m	.)

What	does	this	mean?	Well,	for	one	thing,	the	position–time	graph	of	an
object	in	simple	harmonic	motion	is	a	cosine	graph,	as	you	might	have	been
shown	in	your	physics	class.	But	more	interesting	is	the	period	of	that	cosine
function.	The	cosine	function	repeats	every	2p	radians.	So,	at	time	t	=	0	and	at
time	t	=	2p	/ω	,	the	position	is	the	same.	Therefore,	the	time	2p	/ω	is	the	period
of	the	simple	harmonic	motion.	And	plugging	in	the	ω	value	shown	above,	you
see	that—voila!	—

as	listed	on	the	equation	sheet!

The	Compound	Pendulum
The	basic	approach	to	pendulums	detailed	above	refers	to	“simple”	pendulums
for	which	the	dimensions	of	the	hanging	mass	are	irrelevant.	If	the	hanging	mass
has	a	size	approaching	the	length	of	the	string,	the	period	of	this	“compound”
pendulum	is



where	I	is	the	rotational	inertia	of	the	hanging	mass,	m	is	the	hanging	mass,	and
d	is	the	distance	from	the	center	of	mass	to	the	top	of	the	string.	Only	use	this
equation	if	you	haveto.	The	vast	majority	of	physics	C	pendulums	involve	long
strings	and	masses	small	enough	to	make	the	simple	pendulum	approximation
valid.	After	all,	for	a	“point”	mass	on	the	end	of	the	string,	the	rotational	inertia
is	I	=	mL	2	,	meaning	that	even	the	compound	formula	reduces	to

	Practice	Problems
1	.	A	basketball	player	dribbles	the	ball	so	that	it	bounces	regularly,	twice	per
second.	Is	this	ball	in	simple	harmonic	motion?	Explain.

Multiple	Choice:
2	.	A	pendulum	has	a	period	of	5	seconds	on	Earth.	On	Jupiter,	where	g	∼	30
m/s2	,	the	period	of	this	pendulum	would	be	closest	to

(A)	1	s
(B)	3	s
(C)	5	s
(D)	8	s
(E)	15	s

3	.	A	pendulum	and	a	mass	on	a	spring	are	designed	to	vibrate	with	the	same
period	T	.	These	devices	are	taken	onto	the	Space	Shuttle	in	orbit.	What	is	the
period	of	each	on	the	Space	Shuttle?



4	.	A	mass	on	a	spring	has	a	frequency	of	2.5	Hz	and	an	amplitude	of	0.05	m.	In
one	complete	period,	what	distance	does	the	mass	traverse?	(This	question
asks	for	the	actual	distance,	not	the	displacement.)

(A)	0.05	cm
(B)	0.01	cm
(C)	20	cm
(D)	10	cm
(E)	5	cm

5	.	Increasing	which	of	the	following	will	increase	the	period	of	a	simple
pendulum?

			I.	the	length	of	the	string
		II.	the	local	gravitational	field
III.		the	mass	attached	to	the	string

(A)	I	only
(B)	II	only
(C)	III	only
(D)	I	and	II	only
(E)	I,	II,	and	III

Free	Response:
6	.	A	mass	m	is	attached	to	a	horizontal	spring	of	spring	constant	k	.	The	spring
oscillates	in	simple	harmonic	motion	with	amplitude	A	.	Answer	the
following	in	terms	of	A	.

(a)			At	what	displacement	from	equilibrium	is	the	speed	half	of	the	maximum
value?

(b)			At	what	displacement	from	equilibrium	is	the	potential	energy	half	of	the
maximum	value?

(c)			When	is	the	mass	farther	from	its	equilibrium	position,	when	its	speed	is
half	maximum,	or	when	its	potential	energy	is	half	maximum?

	Solutions	to	Practice	Problems
1	.	The	ball	is	not	in	simple	harmonic	motion.	An	object	in	SHM	experiences	a
force	that	pushes	toward	the	center	of	the	motion,	pushing	harder	the	farther



the	object	is	from	the	center;	and,	an	object	in	SHM	oscillates	smoothly	with
a	sinusoidal	position–time	graph.	The	basketball	experiences	only	the
gravitational	force,	except	for	the	brief	time	that	it’s	in	contact	with	the
ground.	Its	position–time	graph	has	sharp	peaks	when	it	hits	the	ground.

2	.	B—	The	period	of	a	pendulum	is

All	that	is	changed	by	going	to	Jupiter	is	g	,	which	is	multiplied	by	3.	g	is	in
the	denominator	and	under	a	square	root,	so	the	period	on	Jupiter	will	be
reduced	by	a	factor	of	 	.	So	the	original	5-second	period	is	cut	by	a	bit	less
than	half,	to	about	3	seconds.

3	.	A—	The	restoring	force	that	causes	a	pendulum	to	vibrate	is	gravity.
Because	things	float	in	the	Space	Shuttle	rather	than	fall	to	the	floor,	the
pendulum	will	not	oscillate	at	all.	However,	the	restoring	force	that	causes	a
spring	to	vibrate	is	the	spring	force	itself,	which	does	not	depend	on	gravity.
The	period	of	a	mass	on	a	spring	also	depends	on	mass,	which	is	unchanged
in	the	Space	Shuttle,	so	the	period	of	vibration	is	unchanged	as	well.

4	.	C—	The	amplitude	of	an	object	in	SHM	is	the	distance	from	equilibrium	to
the	maximum	displacement.	In	one	full	period,	the	mass	traverses	this
distance	four	times:	starting	from	max	displacement,	the	mass	goes	down	to
the	equilibrium	position,	down	again	to	the	max	displacement	on	the	opposite
side,	back	to	the	equilibrium	position,	and	back	to	where	it	started	from.	This
is	4	amplitudes,	or	0.20	m,	or	20	cm.

5	.	A—	The	period	of	a	pendulum	is

Because	L	,	the	length	of	the	string,	is	in	the	numerator,	increasing	L	increases
the	period.	Increasing	g	will	actually	decrease	the	period	because	g	is	in	the
denominator;	increasing	the	mass	on	the	pendulum	has	no	effect	because	mass
does	not	appear	in	the	equation	for	period.

6	.	(a)	The	maximum	speed	of	the	mass	is	at	the	equilibrium	position,	where	PE
=	0,	so	all	energy	is	kinetic.	The	maximum	potential	energy	is	at	the



maximum	displacement	A	,	because	there	the	mass	is	at	rest	briefly	and	so
has	no	KE.	At	the	equilibrium	position	all	of	the	PE	has	been	converted	to
KE,	so

Solving	for	v	max	,	it	is	found	that

Now	that	we	have	a	formula	for	the	maximum	speed,	we	can	solve	the
problem.	Call	the	spot	where	the	speed	is	half-maximum	position	2.	Use
conservation	of	energy	to	equate	the	energy	of	the	maximum	displacement
and	position	2:

The	speed	v	2	is	half	of	the	maximum	speed	we	found	earlier,	or	

Plug	that	in	and	 solve	for	x	2	:

The	m	’s	and	the	k	’s	cancel.	The	result	is	 	,	or	about	86%	of	the

amplitude.
(b)	The	total	energy	is	½kA	2	.	At	some	position	x	,	the	potential	energy	will

be	½	of	its	maximum	value.	At	that	point,	½kx	2	=	½(½kA	2	).	Canceling
and	solving	for	x	,	it	is	found	that



This	works	out	to	about	70%	of	the	maximum	amplitude.

(c)	Since	we	solved	in	terms	of	A	,	we	can	just	look	at	our	answers	to	(a)	and

(b).	The	velocity	is	half	maximum	at	 	,	or	86%,	of	A	;	the	potential

energy	is	half	maximum	at	 	or	71%,	of	A	.	Therefore,	the	mass	is

farther	from	equilibrium	when	velocity	is	half	maximum.

	Rapid	Review
•			An	oscillation	is	motion	that	regularly	repeats	itself	over	the	same	path.
Oscillating	objects	are	acted	on	by	a	restoring	force.

•			One	repetition	of	periodic	motion	is	called	a	cycle.	The	maximum
displacement	of	an	oscillating	object	during	a	cycle	is	the	object’s	amplitude.
The	time	it	takes	for	an	object	to	go	through	a	cycle	is	the	period	of
oscillation.

•			Period	is	related	to	frequency:	T	=	1/f	,	and	f	=	1/T	.

•			When	solving	problems	that	involve	springs	or	simple	pendulums,	be	on	the
lookout	for	ways	to	apply	conservation	of	energy.	Not	every	simple	harmonic
motion	problem	will	require	you	to	use	conservation	of	energy,	but	many	will.

•			The	position–time	graph	of	an	object	in	simple	harmonic	motion	is	a	cosine
graph.	Specifically,	the	position	of	the	object	is	found	by	the	equation	x	=	A
cos(ωt	),	where



1	But	even	if	you	did	travel	to	another	planet,	do	you	really	think	you	would	remember	to	pack	your
pendulum?



CHAPTER 	 17

Simple	Harmonic	Motion

1	.				The	simple	pendulum	and	a	spring-mass	system	are	both	displaced	from
equilibrium	(θ	and	x	),	as	shown	in	the	figure,	such	that	they	have	identical
oscillatory	time	periods	(T).	The	initial	displacements	are	then	doubled	to	2θ
and	2x	,	and	the	masses	are	again	released.	What	will	the	new	time	periods	of
each	oscillator	be?
(A)			Pendulum	=	2T;	mass-spring	=	2T
(B)			Pendulum	=	2T;	mass-spring	=	T
(C)			Pendulum	=	T;	mass-spring	=	2T
(D)			Pendulum	=	T;	mass-spring	=	T
(E)			Pendulum	=	 	T;	mass-spring	=	 	T



2	.				A	mass	of	8	kg	oscillates	back	and	forth	on	a	spring	of	force	constant	k.	A
graph	of	its	motion	is	shown	in	the	figure.	What	is	the	maximum	acceleration
of	the	mass?

(A)			

(B)			3π	m/s2

(C)			

(D)			

(E)			It	is	impossible	to	determine	the	numerical	value	of	the	acceleration
without	knowing	the	value	of	k.

3	.				The	graph	shows	the	velocity-time	for	a	mass	connected	to	a	spring
oscillating	in	simple	harmonic	motion.	Which	of	the	following	graphs	best
represents	the	corresponding	potential	energy	(U	)	of	the	mass	as	a	function
of	time?

(A)			



(B)			

(C)			

(D)			

(E)			

4	.				A	rod	of	length	L	and	uniform	density	ρ	is	suspended	through	a	hole	near
the	end,	so	it	can	swing	back	and	forth	about	its	endpoint.	The	rod	is
displaced	a	small	distance	and	released	so	that	it	oscillates	as	a	pendulum.
The	time	period	of	its	motion	will	be

(A)			

(B)			

(C)			



(D)			

(E)			

	Answers

1	.				D	—Neither	the	pendulum	nor	the	mass-spring	system’s	time	period	is
dependent	on	the	amplitude	of	the	release	point,	so

	.

2	.				D	—The	equation	of	motion	of	the	oscillating	mass	is	x	=	A	(cosωt	),	where
the	amplitude	(A	)	=	6	m.	The	cos	function	repeats	itself	when	Time	(t	)	=	4
s.	This	occurs	when	2π	=	ωt	=	ω(4	s).	Therefore,	ω	=	π/2.	Taking	the	second
derivative	of	the	position	function	yields	the	acceleration	of	the	mass:	

	.	Thus,	the	magnitude	of	the	maximum

acceleration	is	 	.

3	.				D	—The	potential	energy	of	the	system	is	given	by	 	.	Note	that

the	potential	energy	is	always	positive.	This	eliminates	all	the	graphs	except
choices	D	and	E.	The	potential	energy	will	be	at	a	maximum	when	the
velocity	of	the	mass	is	zero.	This	corresponds	to	choice	D.	Choice	E
represents	the	kinetic	energy	of	the	system.

4	.				C	—Since	the	mass	of	the	pendulum	is	distributed	throughout	its	length,	we

must	use	the	physical	pendulum	formula	 	.	The	moment	of

inertia	for	a	uniform	bar	is	 	and	=	 	.	This	gives	us	





CHAPTER 	 18

Electrostatics

IN	THIS	CHAPTER

Summary:	An	electric	field	provides	a	force	on	a	charged	particle.	Electric	potential,	also	called	voltage,
provides	energy	to	a	charged	particle.	Once	you	know	the	force	or	energy	experienced	by	a	charged	particle,
Newtonian	mechanics	(i.e.,	kinematics,	conservation	of	energy,	etc.)	can	be	applied	to	predict	the	particle’s
motion.

Key	Ideas
		The	electric	force	on	a	charged	particle	is	qE	,	regardless	of	what	produces	the
electric	field.	The	electric	potential	energy	of	a	charged	particle	is	qV	.
		Positive	charges	are	forced	in	the	direction	of	an	electric	field;	negative
charges,	opposite	the	field.
		Positive	charges	are	forced	from	high	to	low	potential;	negative	charges,	low
to	high.
		Point	charges	produce	non-uniform	electric	fields.	Parallel	plates	produce	a
uniform	electric	field	between	them.
		Electric	field	is	a	vector,	and	electric	potential	is	a	scalar.

Relevant	Equations
Electric	force	on	a	charge	in	an	electric	field:

F	=	qE



Electric	field	produced	by	a	point	charge	1	:

Electric	field	produced	by	parallel	plates:

Electric	potential	energy	in	terms	of	voltage:

PE	=	qV

Voltage	produced	by	a	point	charge:

Charge	stored	on	a	capacitor:

Q	=	CV

Capacitance	of	a	parallel	plate	capacitor:

Electricity	literally	holds	the	world	together.	Sure,	gravity	is	pretty	important,
too,	but	the	primary	reason	that	the	molecules	in	your	body	stick	together	is
because	of	electric	forces.	A	world	without	electrostatics	would	be	no	world	at
all.

This	chapter	introduces	a	lot	of	the	vocabulary	needed	to	discuss	electricity,
and	it	focuses	on	how	to	deal	with	electric	charges	that	aren’t	moving:	hence	the
name,	electrostatics	.	We’ll	look	at	moving	charges	in	the	next	chapter,	when	we
discuss	circuits.



Electric	Charge
All	matter	is	made	up	of	three	types	of	particles:	protons,	neutrons,	and
electrons.	Protons	have	an	intrinsic	property	called	“positive	charge.”	Neutrons
don’t	contain	any	charge,	and	electrons	have	a	property	called	“negative	charge.”

The	unit	of	charge	is	the	coulomb,	abbreviated	C.	One	proton	has	a	charge	of
1.6	×	10−19	coulombs.

Most	objects	that	we	encounter	in	our	daily	lives	are	electrically	neutral—
things	like	couches,	for	instance,	or	trees,	or	bison.	These	objects	contain	as
many	positive	charges	as	negative	charges.	In	other	words,	they	contain	as	many
protons	as	electrons.

When	an	object	has	more	protons	than	electrons,	though,	it	is	described	as
“positively	charged”;	and	when	it	has	more	electrons	than	protons,	it	is	described
as	“negatively	charged.”	The	reason	that	big	objects	like	couches	and	trees	and
bison	don’t	behave	like	charged	particles	is	because	they	contain	so	many
bazillions	of	protons	and	electrons	that	an	extra	few	here	or	there	won’t	really
make	much	of	a	difference.	So	even	though	they	might	have	a	slight	electric
charge,	that	charge	would	be	much	too	small,	relatively	speaking,	to	detect.

Tiny	objects,	like	atoms,	more	commonly	carry	a	measurable	electric	charge,
because	they	have	so	few	protons	and	electrons	that	an	extra	electron,	for
example,	would	make	a	big	difference.	Of	course,	you	can	have	very	large
charged	objects.	When	you	walk	across	a	carpeted	floor	in	the	winter,	you	pick
up	lots	of	extra	charges	and	become	a	charged	object	yourself	…	until	you	touch
a	doorknob,	at	which	point	all	the	excess	charge	in	your	body	travels	through
your	finger	and	into	the	doorknob,	causing	you	to	feel	a	mild	electric	shock.

Electric	charges	follow	a	simple	rule:	Like	charges	repel;	opposite	charges
attract	.	Two	positively	charged	particles	will	try	to	get	as	far	away	from	each
other	as	possible,	while	a	positively	charged	particle	and	a	negatively	charged
particle	will	try	to	get	as	close	as	possible.

You	can	also	have	something	called	“induced	charge.”	An	induced	charge
occurs	when	an	electrically	neutral	object	becomes	polarized—when	negative
charges	pile	up	in	one	part	of	the	object	and	positive	charges	pile	up	in	another
part	of	the	object.	The	drawing	in	Figure	18.1	illustrates	how	you	can	create	an
induced	charge	in	an	object.



Figure	18.1			Creation	of	an	induced	charge.

Electric	Fields
Before	we	talk	about	electric	fields,	we’ll	first	define	what	a	field,	in	general,	is.

Field:	A	property	of	a	region	of	space	that	can	apply	a	force	to	objects	found
in	that	region	of	space

A	gravitational	field	is	a	property	of	the	space	that	surrounds	any	massive	object.
There	is	a	gravitational	field	that	you	are	creating	and	which	surrounds	you,	and
this	field	extends	infinitely	into	space.	It	is	a	weak	field,	though,	which	means
that	it	doesn’t	affect	other	objects	very	much—you’d	be	surprised	if	everyday
objects	started	flying	toward	each	other	because	of	gravitational	attraction.	The
Earth,	on	the	other	hand,	creates	a	strong	gravitational	field.	Objects	are
continually	being	pulled	toward	the	Earth’s	surface	due	to	gravitational
attraction.	However,	the	farther	you	get	from	the	center	of	the	Earth,	the	weaker
the	gravitational	field,	and,	correspondingly,	the	weaker	the	gravitational
attraction	you	would	feel.

An	electric	field	is	a	bit	more	specific	than	a	gravitational	field:	it	only
affects	charged	particles.

Electric	Field:	A	property	of	a	region	of	space	that	applies	a	force	to	charged



objects	in	that	region	of	space.	A	charged	particle	in	an	electric	field	will
experience	an	electric	force.

Unlike	a	gravitational	field,	an	electric	field	can	either	push	or	pull	a	charged
particle,	depending	on	the	charge	of	the	particle.	Electric	field	is	a	vector;	so,
electric	fields	are	always	drawn	as	arrows.

Every	point	in	an	electric	field	has	a	certain	value	called,	surprisingly
enough,	the	“electric	field	value,”	or	E	,	and	this	value	tells	you	how	strongly	the
electric	field	at	that	point	would	affect	a	charge.	The	units	of	E	are
newtons/coulomb,	abbreviated	N/C.

Force	of	an	Electric	Field

The	force	felt	by	a	charged	particle	in	an	electric	field	is	described	by	a	simple
equation:

F	=	qE

In	other	words,	the	force	felt	by	a	charged	particle	in	an	electric	field	is	equal	to
the	charge	of	the	particle,	q	,	multiplied	by	the	electric	field	value,	E	.

An	electron,	a	proton,	and	a	neutron	are	each	placed	in	a	uniform	electric	field
of	magnitude	60	N/C,	directed	to	the	right.	What	is	the	magnitude	and
direction	of	the	force	exerted	on	each	particle?



The	direction	of	the	force	on	a	positive	charge	is	in	the	same	direction	as	the
electric	field;	the	direction	of	the	force	on	a	negative	charge	is	opposite	the
electric	field.

Let’s	try	this	equation	on	for	size.	Here’s	a	sample	problem:

The	solution	here	is	nothing	more	than	plug-and-chug	into	F	=	qE	.	Notice	that
we’re	dealing	with	a	uniform	electric	field—the	field	lines	are	evenly	spaced
throughout	the	whole	region.	This	means	that,	no	matter	where	a	particle	is
within	the	electric	field,	it	always	experiences	an	electric	field	of	exactly	60	N/C.

Also	note	our	problem-solving	technique.	To	find	the	magnitude	of	the	force,
we	plug	in	just	the	magnitude	of	the	charge	and	the	electric	field—no	negative
signs	allowed!	To	find	the	direction	of	the	force,	use	the	reasoning	in	the	box
above	(positive	charges	are	forced	in	the	direction	of	the	E	field,	negative
charges	opposite	the	E	field).

Let’s	start	with	the	electron,	which	has	a	charge	of	1.6	×	10−19	C	(no	need	to
memorize,	you	can	look	this	up	on	the	constant	sheet):

Now	the	proton:

And	finally	the	neutron:

F	=	(0	C)(60	N/C)	=	0	N

Notice	that	the	proton	feels	a	force	in	the	direction	of	the	electric	field,	but	the
electron	feels	the	same	force	in	the	opposite	direction.



Don’t	state	a	force	with	a	negative	sign.	Signs	just	indicate	the	direction	of	a
force,	anyway.	So,	just	plug	in	the	values	for	q	and	E	,	then	state	the	direction	of
the	force	in	words.

Electric	Potential
When	you	hold	an	object	up	over	your	head,	that	object	has	gravitational
potential	energy.	If	you	were	to	let	it	go,	it	would	fall	to	the	ground.

Similarly,	a	charged	particle	in	an	electric	field	can	have	electrical	potential
energy.	For	example,	if	you	held	a	proton	in	your	right	hand	and	an	electron	in
your	left	hand,	those	two	particles	would	want	to	get	to	each	other.	Keeping
them	apart	is	like	holding	that	object	over	your	head;	once	you	let	the	particles
go,	they’ll	travel	toward	each	other	just	like	the	object	would	fall	to	the	ground.

In	addition	to	talking	about	electrical	potential	energy,	we	also	talk	about	a
concept	called	electric	potential.

Electric	Potential:	Potential	energy	provided	by	an	electric	field	per	unit
charge;	also	called	voltage

Electric	potential	is	a	scalar	quantity.	The	units	of	electric	potential	are	volts.	1
volt	=	1	J/C.

Just	as	we	use	the	term	“zero	of	potential”	in	talking	about	gravitational
potential,	we	can	also	use	that	term	to	talk	about	voltage.	We	cannot	solve	a
problem	that	involves	voltage	unless	we	know	where	the	zero	of	potential	is.
Often,	the	zero	of	electric	potential	is	called	“ground.”

Unless	it	is	otherwise	specified,	the	zero	of	electric	potential	is	assumed	to	be
far,	far	away.	This	means	that	if	you	have	two	charged	particles	and	you	move
them	farther	and	farther	from	each	another,	ultimately,	once	they’re	infinitely	far
away	from	each	other,	they	won’t	be	able	to	feel	each	other’s	presence.

The	electrical	potential	energy	of	a	charged	particle	is	given	by	this	equation:



Here,	q	is	the	charge	on	the	particle,	and	V	is	the	voltage.
It	is	extremely	important	to	note	that	electric	potential	and	electric	field	are

not	the	same	thing.	This	example	should	clear	things	up:

Three	points,	labeled	A,	B,	and	C,	are	found	in	a	uniform	electric	field.	At
which	point	will	a	positron	(a	positively	charged	version	of	an	electron)	have
the	greatest	electrical	potential	energy?

Electric	field	lines	point	in	the	direction	that	a	positive	charge	will	be	forced,
which	means	that	our	positron,	when	placed	in	this	field,	will	be	pushed	from
left	to	right.	So,	just	as	an	object	in	Earth’s	gravitational	field	has	greater
potential	energy	when	it	is	higher	off	the	ground	(think	“mgh	”),	our	positron
will	have	the	greatest	electrical	potential	energy	when	it	is	farthest	from	where	it
wants	to	get	to.	The	answer	is	A.

We	hope	you	noticed	that,	even	though	the	electric	field	was	the	same	at	all
three	points,	the	electric	potential	was	different	at	each	point.

How	about	another	example?

A	positron	is	given	an	initial	velocity	of	6	×	106	m/s	to	the	right.	It	travels	into
a	uniform	electric	field,	directed	to	the	left.	As	the	positron	enters	the	field,	its
electric	potential	is	zero.	What	will	be	the	electric	potential	at	the	point	where
the	positron	has	a	speed	of	1	×	106	m/s?



This	is	a	rather	simple	conservation	of	energy	problem,	but	it’s	dressed	up	to
look	like	a	really	complicated	electricity	problem.

As	with	all	conservation	of	energy	problems,	we’ll	start	by	writing	our
statement	of	conservation	of	energy.

Ki	+	Ui	=	Kf	+	Uf

Next,	we’ll	fill	in	each	term	with	the	appropriate	equations.	Here	the	potential
energy	is	not	due	to	gravity	(mgh	),	nor	due	to	a	spring	(1/2	kx	2	).	The	potential
energy	is	electric,	so	it	should	be	written	as	qV	.

½	mvi	2	+	qVi	=	½	mvf	2	+	qVf

Finally,	we’ll	plug	in	the	corresponding	values.	The	mass	of	a	positron	is	exactly
the	same	as	the	mass	of	an	electron,	and	the	charge	of	a	positron	has	the	same
magnitude	as	the	charge	of	an	electron,	except	a	positron’s	charge	is	positive.
Both	the	mass	and	the	charge	of	an	electron	are	given	to	you	on	the	“constants
sheet.”	Also,	the	problem	told	us	that	the	positron’s	initial	potential	V	i	was	zero.

½	(9.1	×	10−31	kg)(6	×	106	m/s)2	+	(1.6	×	10−19	C)(0)	=
½	(9.1	×	10−31	kg)(1	×	106	m/s)2	+	(1.6	×	10−19	C)(Vf	)

Solving	for	Vf	,	we	find	that	Vf	is	about	100	V.

For	forces	,	a	negative	sign	simply	indicates	direction.	For	potentials,	though,
a	negative	sign	is	important.	−300	V	is	less	than	−200	V,	so	a	proton	will	seek
out	a	−300	V	position	in	preference	to	a	−200	V	position.	So,	be	careful	to	use
proper	+	and	−	signs	when	dealing	with	potential.

Just	as	you	can	draw	electric	field	lines,	you	can	also	draw	equipotential	lines.



Equipotential	Lines:	Lines	that	illustrate	every	point	at	which	a	charged
particle	would	experience	a	given	potential

Figure	18.2	shows	a	few	examples	of	equipotential	lines	(shown	with	solid	lines)
and	their	relationship	to	electric	field	lines	(shown	with	dotted	lines):

Figure	18.2			Two	examples	of	equipotential	lines	(in	bold)	and	electric	field
lines	(dotted).

On	the	left	in	Figure	18.2	,	the	electric	field	points	away	from	the	positive
charge.	At	any	particular	distance	away	from	the	positive	charge,	you	would	find
an	equipotential	line	that	circles	the	charge—we’ve	drawn	two,	but	there	are	an
infinite	number	of	equipotential	lines	around	the	charge.	If	the	potential	of	the
outermost	equipotential	line	that	we	drew	was,	say,	10	V,	then	a	charged	particle
placed	anywhere	on	that	equipotential	line	would	experience	a	potential	of	10	V.

On	the	right	in	Figure	18.2	,	we	have	a	uniform	electric	field.	Notice	how	the
equipotential	lines	are	drawn	perpendicular	to	the	electric	field	lines.	In	fact,
equipotential	lines	are	always	drawn	perpendicular	to	electric	field	lines,	but
when	the	field	lines	aren’t	parallel	(as	in	the	drawing	on	the	left),	this	fact	is
harder	to	see.

Moving	a	charge	from	one	equipotential	line	to	another	takes	energy.	Just
imagine	that	you	had	an	electron	and	you	placed	it	on	the	innermost
equipotential	line	in	the	drawing	on	the	left.	If	you	then	wanted	to	move	it	to	the
outer	equipotential	line,	you’d	have	to	push	pretty	hard,	because	your	electron
would	be	trying	to	move	toward,	and	not	away	from,	the	positive	charge	in	the
middle.



In	the	diagram	above,	point	A	and	point	B	are	separated	by	a	distance	of	30
cm.	How	much	work	must	be	done	by	an	external	force	to	move	a	proton	from
point	A	to	point	B?

The	potential	at	point	B	is	higher	than	at	point	A	;	so	moving	the	positively
charged	proton	from	A	to	B	requires	work	to	change	the	proton’s	potential
energy.	The	question	here	really	is	asking	how	much	more	potential	energy	the
proton	has	at	point	B	.

Well,	potential	energy	is	equal	to	qV	;	here,	q	is	1.6	×	10−19	C,	the	charge	of	a
proton.	The	potential	energy	at	point	A	is	(1.6	×	10−19	C)(50	V)	=	8.0	×	10−18	J;
the	potential	energy	at	point	B	is	(1.6	×	10−19	C)(60	V)	=	9.6	×	10−18	J.	Thus,	the
proton’s	potential	is	1.6	×	10−18	J	higher	at	point	B	,	so	it	takes	1.6	×	10−18	J	of
work	to	move	the	proton	there.

Um,	didn’t	the	problem	say	that	points	A	and	B	were	30	cm	apart?	Yes,	but
that’s	irrelevant.	Since	we	can	see	the	equipotential	lines,	we	know	the	potential
energy	of	the	proton	at	each	point;	the	distance	separating	the	lines	is	irrelevant.

Special	Geometries	for	Electrostatics



There	are	two	situations	involving	electric	fields	that	are	particularly	nice
because	they	can	be	described	with	some	relatively	easy	formulas.	Let’s	take	a
look:

Parallel	Plates
If	you	take	two	metal	plates,	charge	one	positive	and	one	negative,	and	then	put
them	parallel	to	each	other,	you	create	a	uniform	electric	field	in	the	middle,	as
shown	in	Figure	18.3	:

Figure	18.3			Electric	field	between	charged,	parallel	plates.

The	electric	field	between	the	plates	has	a	magnitude	of

V	is	the	voltage	difference	between	the	plates,	and	d	is	the	distance	between	the
plates.	Remember,	this	equation	only	works	for	parallel	plates.

Charged	parallel	plates	can	be	used	to	make	a	capacitor	,	which	is	a	charge-
storage	device.	When	a	capacitor	is	made	from	charged	parallel	plates,	it	is
called,	logically	enough,	a	“parallel-plate	capacitor.”	A	schematic	of	this	type	of
capacitor	is	shown	in	Figure	18.4	.



Figure	18.4			Basic	parallel-plate	capacitor.

The	battery	in	Figure	18.4	provides	a	voltage	across	the	plates;	once	you’ve
charged	the	capacitor,	you	disconnect	the	battery.	The	space	between	the	plates
prevents	any	charges	from	jumping	from	one	plate	to	the	other	while	the
capacitor	is	charged.	When	you	want	to	discharge	the	capacitor,	you	just	connect
the	two	plates	with	a	wire.

The	amount	of	charge	that	each	plate	can	hold	is	described	by	the	following
equation:

Q	is	the	charge	on	each	plate,	C	is	called	the	“capacitance,”	and	V	is	the	voltage
across	the	plates.	The	capacitance	is	a	property	of	the	capacitor	you	are	working
with,	and	it	is	determined	primarily	by	the	size	of	the	plates	and	the	distance
between	the	plates,	as	well	as	by	the	material	that	fills	the	space	between	the
plates.	The	units	of	capacitance	are	farads,	abbreviated	F;	1	coulomb/volt	=	1
farad.

The	only	really	interesting	thing	to	know	about	parallel-plate	capacitors	is
that	their	capacitance	can	be	easily	calculated.	The	equation	is:



In	this	equation,	A	is	the	area	of	each	plate	(in	m2	),	and	d	is	the	distance
between	the	plates	(in	m).	The	term	ε	0	(pronounced	“epsilon-naught”)	is	called
the	“permittivity	of	free	space.”	This	term	will	show	up	again	soon,	when	we
introduce	the	constant	k	.	The	value	of	ε	0	is	8.84	×	10−12	C/V·m,	which	is	listed
on	the	constants	sheet.

Capacitors	become	important	when	we	work	with	circuits.	So	we’ll	see	them
again	in	Chapter	19	.

Point	Charges
As	much	as	the	writers	of	the	AP	exam	like	parallel	plates,	they	love	point
charges.	So	you’ll	probably	be	using	these	next	equations	quite	a	lot	on	the	test.

But,	please	don’t	go	nuts…	.	The	formulas	for	force	on	a	charge	in	an
electric	field	(F	=	qE	)	and	a	charge’s	electrical	potential	energy	(PE	=	qV	)	are
your	first	recourse,	your	fundamental	tools	of	electrostatics.	On	the	AP	exam,
most	electric	fields	are	NOT	produced	by	point	charges!	Only	use	the	equations
in	this	section	when	you	have	convinced	yourself	that	a	point	charge	is	creating
the	electric	field	or	the	voltage	in	question.

First,	the	value	of	the	electric	field	at	some	distance	away	from	a	point
charge:

Q	is	the	charge	of	your	point	charge,	ε	0	is	the	permittivity	of	free	space	(on	the
table	of	information),	and	r	is	the	distance	away	from	the	point	charge.	2	The



field	produced	by	a	positive	charge	points	away	from	the	charge;	the	field
produced	by	a	negative	charge	points	toward	the	charge.	When	finding	an
electric	field	with	this	equation,	do	NOT	plug	in	the	sign	of	the	charge	or	use
negative	signs	at	all	.

Second,	the	electric	potential	at	some	distance	away	from	a	point	charge:

When	using	this	equation,	you	must	include	a	+	or	−	sign	on	the	charge	creating
the	potential.	(See	Figure	18.5	.)

Figure	18.5			Electric	field	produced	by	point	charges.

And	third,	the	force	that	one	point	charge	exerts	on	another	point	charge:

In	this	equation,	Q	1	is	the	charge	of	one	of	the	point	charges,	and	Q	2	is	the
charge	on	the	other	one.	This	equation	is	known	as	Coulomb’s	Law.

To	get	comfortable	with	these	three	equations,	we’ll	provide	you	with	a
rather	comprehensive	problem.



Two	point	charges,	labeled	“A”	and	“B”,	are	located	on	the	x	-axis.	“A”	has	a
charge	of	—3	μC,	and	“B”	has	a	charge	of	+3	μC.	Initially,	there	is	no	charge
at	point	P	,	which	is	located	on	the	y	-axis	as	shown	in	the	diagram.

(a)			What	is	the	electric	field	at	point	P	due	to	charges	“A”	and	“B”?
(b)			If	an	electron	were	placed	at	point	P	,	what	would	be	the	magnitude	and

direction	of	the	force	exerted	on	the	electron?
(c)			What	is	the	electric	potential	at	point	P	due	to	charges	“A”	and	“B”?

Yikes!	This	is	a	monster	problem.	But	if	we	take	it	one	part	at	a	time,	you’ll	see
that	it’s	really	not	too	bad.

Part	1—Electric	Field
Electric	field	is	a	vector	quantity.	So	we’ll	first	find	the	electric	field	at	point	P
due	to	charge	“A,”	then	we’ll	find	the	electric	field	due	to	charge	“B,”	and	then
we’ll	add	these	two	vector	quantities.	One	note	before	we	get	started:	to	find	r	,
the	distance	between	points	P	and	“A”	or	between	P	and	“B,”	we’ll	have	to	use
the	Pythagorean	theorem.	We	won’t	show	you	our	work	for	that	calculation,	but
you	should	if	you	were	solving	this	on	the	AP	exam.



Note	that	we	didn’t	plug	in	any	negative	signs!	Rather,	we	calculated	the
magnitude	of	the	electric	field	produced	by	each	charge,	and	showed	the
direction	on	the	diagram.

Now,	to	find	the	net	electric	field	at	point	P	,	we	must	add	the	electric	field
vectors.	This	is	made	considerably	simpler	by	the	recognition	that	the	y	-
components	of	the	electric	fields	cancel	…	both	of	these	vectors	are	pointed	at
the	same	angle,	and	both	have	the	same	magnitude.	So,	let’s	find	just	the	x	-
component	of	one	of	the	electric	field	vectors:

E	x	=	E	cos	θ	,	where	θ	is	measured	from	the	horizontal.

Some	quick	trigonometry	will	find	cos	θ	…	since	cos	θ	is	defined	as	

,	inspection	of	the	diagram	shows	that	 	.	So,	the	horizontal	electric

field	Ex	=	(510	m)	 	…	this	gives	140	N/C.

And	now	finally,	there	are	TWO	of	these	horizontal	electric	fields	adding



together	to	the	left—one	due	to	charge	“A”	and	one	due	to	charge	“B”.	The	total
electric	field	at	point	P	,	then,	is

280	N/C,	to	the	left.

Part	2—Force
The	work	that	we	put	into	Part	1	makes	this	part	easy.	Once	we	have	an	electric
field,	it	doesn’t	matter	what	caused	the	E	field—just	use	the	basic	equation	F	=
qE	to	solve	for	the	force	on	the	electron,	where	q	is	the	charge	of	the	electron.
So,

F	=	(1.6	×	10−19	C)	280	N/C	=	4.5	×	10−17	N.

The	direction	of	this	force	must	be	OPPOSITE	the	E	field	because	the	electron
carries	a	negative	charge;	so,	to	the	right	.

Part	3—Potential
The	nice	thing	about	electric	potential	is	that	it	is	a	scalar	quantity,	so	we	don’t
have	to	concern	ourselves	with	vector	components	and	other	such	headaches.

The	potential	at	point	P	is	just	the	sum	of	these	two	quantities.	V	=	zero!
Notice	that	when	finding	the	electric	potential	due	to	point	charges,	you	must

include	negative	signs	…	negative	potentials	can	cancel	out	positive	potentials,
as	in	this	example.

Gauss’s	Law
A	more	thorough	understanding	of	electric	fields	comes	from	Gauss’s	law.	But
before	looking	at	Gauss’s	law	itself,	it	is	necessary	to	understand	the	concept	of
electric	flux.



Electric	flux:	The	amount	of	electric	field	that	penetrates	an	area

Φ	E	=	E	·	A

The	electric	flux,	Φ	E	,	equals	the	electric	field	multiplied	by	the	surface	area
through	which	the	field	penetrates.

Flux	only	exists	if	the	electric	field	lines	penetrate	straight	through	a	surface.
(Or,	if	the	electric	field	lines	have	a	component	that’s	perpendicular	to	a	surface.)
If	an	electric	field	exists	parallel	to	a	surface,	there	is	zero	flux	through	that
surface.	One	way	to	think	about	this	is	to	imagine	that	electric	field	lines	are	like
arrows,	and	the	surface	you’re	considering	is	like	an	archer’s	bull’s-eye.	There
would	be	flux	if	the	arrows	hit	the	target;	but	if	the	archer	is	standing	at	a	right
angle	to	the	target	(so	that	his	arrows	zoom	right	on	past	the	target	without	even
nicking	it)	there’s	no	flux.

In	words,	Gauss’s	law	states	that	the	net	electric	flux	through	a	closed
surface	is	equal	to	the	charge	enclosed	divided	by	ε	0	.	This	is	often	written	as

How	and	When	to	Use	Gauss’s	Law
Gauss’s	law	is	valid	the	universe	over.	However,	in	most	cases	Gauss’s	law	is
not	in	any	way	useful—no	one	expects	you	to	be	able	to	evaluate	a	three-
dimensional	integral	with	a	dot	product!	ONLY	use	Gauss’s	law	when	the
problem	has	spherical,	cylindrical,	or	planar	symmetry.

First,	identify	the	symmetry	of	the	problem.	Then	draw	a	closed	surface,
called	a	“Gaussian	surface,”	that	the	electric	field	is	everywhere	pointing	straight
through.	A	Gaussian	surface	isn’t	anything	real	…	it’s	just	an	imaginary	closed
surface	that	you’ll	use	to	solve	the	problem.	The	net	electric	flux	is	just	E	times
the	area	of	the	Gaussian	surface	you	drew.

You	should	NEVER,	ever,	try	to	evaluate	the	integral	∫	E	·	dA	in	using	Gauss’s



law!

Here	is	an	example	problem.

Consider	a	metal	sphere	of	radius	R	that	carries	a	surface	charge	density	σ	.
What	is	the	magnitude	of	the	electric	field	as	a	function	of	the	distance	from
the	center	of	the	sphere?

There	are	two	possibilities	here.	One	possibility	is	that	the	function	describing
the	electric	field	will	be	a	smooth,	continuous	function.	The	other	possibility	is
that	the	function	inside	the	sphere	will	be	different	from	the	function	outside	the
sphere	(after	all,	they’re	different	environments—inside	the	sphere	you’re
surrounded	by	charge,	and	outside	the	sphere	you’re	not).	So	we’ll	assume	that
the	function	is	different	in	each	environment,	and	we’ll	consider	the	problem	in
two	parts:	inside	the	sphere	and	outside	the	sphere.	If	it	turns	out	that	the
function	is	actually	smooth	and	continuous,	then	we’ll	have	done	some	extra
work,	but	we’ll	still	get	the	right	answer.

Inside	the	sphere,	draw	a	Gaussian	sphere	of	any	radius.	No	charge	is
enclosed,	because	in	a	conductor,	all	the	charges	repel	each	other	until	all	charge
resides	on	the	outer	edge.	So,	by	Gauss’s	law	since	the	enclosed	charge	is	zero,
the	term	E·A	has	to	be	zero	as	well.	A	refers	to	the	area	of	the	Gaussian	surface
you	drew,	which	sure	as	heck	has	a	surface	area.

The	electric	field	inside	the	conducting	sphere	must	be	zero	everywhere	.
This	is	actually	a	general	result	that	you	should	memorize—the	electric	field
inside	a	conductor	is	always	zero.

Outside	the	sphere,	draw	a	Gaussian	sphere	of	radius	r	.	This	sphere,
whatever	its	radius,	always	encloses	the	full	charge	of	the	conductor.	What	is
that	charge?	Well,	σ	represents	the	charge	per	area	of	the	conductor,	and	the	area
of	the	conductor	is	4πR	2	.	So	the	charge	on	the	conductor	is	σ	4πR	2	.	Now,	the
Gaussian	surface	of	radius	r	has	area	4πr	2	.	Plug	all	of	this	into	Gauss’s	law:

E	·4πr	2	=	σ	4πR	2	/ε	0	.



All	the	variables	are	known,	so	just	solve	for	electric	field:	E	=	σR	2	/ε	0	r	2	.
Now	we	can	state	our	answer,	where	r	is	the	distance	from	the	center	of	the

charged	sphere:

What	is	interesting	about	this	result?	We	solved	in	terms	of	the	charge	density	σ
on	the	conductor.	If	we	solve	instead	in	terms	of	Q	,	the	total	charge	on	the
conductor,	we	recover	the	formula	for	the	electric	field	of	a	point	charge:

	Practice	Problems

Multiple	Choice:
Questions	1	and	2

Two	identical	positive	charges	Q	are	separated	by	a	distance	a	,	as	shown	above.

1	.	What	is	the	electric	field	at	a	point	halfway	between	the	two	charges?

(A)			kQ	/a	2

(B)			2kQ	/a	2
(C)			zero
(D)			kQQ	/a	2
(E)			2kQ	/a

2	.	What	is	the	electric	potential	at	a	point	halfway	between	the	two	charges?

(A)			kQ	/a



(B)			2kQ	/a
(C)			zero
(D)			4kQ	/a
(E)			8kQ	/a

Questions	3	and	4

The	diagram	above	shows	two	parallel	metal	plates	that	are	separated	by
distance	d	.	The	potential	difference	between	the	plates	is	V	.	Point	A	is	twice
as	far	from	the	negative	plate	as	is	point	B	.

3	.	Which	of	the	following	statements	about	the	electric	potential	between	the
plates	is	correct?

(A)			The	electric	potential	is	the	same	at	points	A	and	B	.
(B)			The	electric	potential	is	two	times	larger	at	A	than	at	B	.
(C)			The	electric	potential	is	two	times	larger	at	B	than	at	A	.
(D)			The	electric	potential	is	four	times	larger	at	A	than	at	B	.
(E)			The	electric	potential	is	four	times	larger	at	B	than	at	A	.

4	.	Which	of	the	following	statements	about	the	electric	field	between	the	plates
is	correct?

(A)			The	electric	field	is	the	same	at	points	A	and	B	.
(B)			The	electric	field	is	two	times	larger	at	A	than	at	B	.
(C)			The	electric	field	is	two	times	larger	at	B	than	at	A	.
(D)			The	electric	field	is	four	times	larger	at	A	than	at	B	.
(E)			The	electric	field	is	four	times	larger	at	B	than	at	A	.



5	.	A	very	long	cylindrical	conductor	is	surrounded	by	a	very	long	cylindrical
conducting	shell,	as	shown	above.	A	length	L	of	the	inner	conductor	carries
positive	charge	Q	.	The	same	length	L	of	the	outer	shell	carries	total	charge
−3Q	.	How	much	charge	is	distributed	on	a	length	L	of	the	outside	surface	of
the	outer	shell?

(A)			none
(B)			−Q
(C)			−2Q
(D)			−3Q
(E)			−4Q

Free	Response:

6	.	Two	conducting	metal	spheres	of	different	radii,	as	shown	above,	each	have
charge	−Q	.

(a)			Consider	one	of	the	spheres.	Is	the	charge	on	that	sphere	likely	to	clump
together	or	to	spread	out?	Explain	briefly.

(b)			Is	charge	more	likely	to	stay	inside	the	metal	spheres	or	on	the	surface	of
the	metal	spheres?	Explain	briefly.

(c)			If	the	two	spheres	are	connected	by	a	metal	wire,	will	charge	flow	from
the	big	sphere	to	the	little	sphere,	or	from	the	little	sphere	to	the	big
sphere?	Explain	briefly.

(d)			Which	of	the	following	two	statements	is	correct?	Explain	briefly.
i.			If	the	two	spheres	are	connected	by	a	metal	wire,	charge	will	stop

flowing	when	the	electric	field	at	the	surface	of	each	sphere	is	the
same.

ii.		If	the	two	spheres	are	connected	by	a	metal	wire,	charge	will	stop
flowing	when	the	electric	potential	at	the	surface	of	each	sphere	is	the
same.

(e)			Explain	how	the	correct	statement	you	chose	from	part	(d)	is	consistent
with	your	answer	to	(c).



	Solutions	to	Practice	Problems

1	.	C—	Electric	field	is	a	vector	.	Look	at	the	field	at	the	center	due	to	each
charge.	The	field	due	to	the	left-hand	charge	points	away	from	the	positive
charge;	i.e.,	to	the	right;	the	field	due	to	the	right-hand	charge	points	to	the
left.	Because	the	charges	are	equal	and	are	the	same	distance	from	the	center
point,	the	fields	due	to	each	charge	have	equal	magnitudes.	So	the	electric
field	vectors	cancel!	E	=	0.

2	.	D—	Electric	potential	is	a	scalar	.	Look	at	the	potential	at	the	center	due	to
each	charge:	Each	charge	is	distance	a	/2	from	the	center	point,	so	the
potential	due	to	each	is	kQ	/(a	/2),	which	works	out	to	2kQ	/a	.	The	potentials
due	to	both	charges	are	positive,	so	add	these	potentials	to	get	4kQ	/a	.

3	.	B—	If	the	potential	difference	between	plates	is,	say,	100	V,	then	we	could
say	that	one	plate	is	at	+100	V	and	the	other	is	at	zero	V.	So,	the	potential
must	change	at	points	in	between	the	plates.	The	electric	field	is	uniform	and
equal	to	V	/d	(d	is	the	distance	between	plates).	Thus,	the	potential	increases
linearly	between	the	plates,	and	A	must	have	twice	the	potential	as	B.

4	.	A—	The	electric	field	by	definition	is	uniform	between	parallel	plates.	This
means	the	field	must	be	the	same	everywhere	inside	the	plates.

5	.	C—	We	have	cylindrical	symmetry,	so	use	Gauss’s	law.	Consider	a	Gaussian
surface	drawn	within	the	outer	shell.	Inside	a	conducting	shell,	the	electric
field	must	be	zero,	as	discussed	in	the	chapter.	By	Gauss’s	law,	this	means	the
Gaussian	surface	we	drew	must	enclose	zero	net	charge.	Because	the	inner
cylinder	carries	charge	+Q	,	the	inside	surface	of	the	shell	must	carry	charge
−Q	to	get	zero	net	charge	enclosed	by	the	Gaussian	surface.	What	happens	to
the	−2Q	that	is	left	over	on	the	conducting	shell?	It	goes	to	the	outer	surface.

6	.	(a)			Like	charges	repel,	so	the	charges	are	more	likely	to	spread	out	from
each	other	as	far	as	possible.

(b)			“Conducting	spheres”	mean	that	the	charges	are	free	to	move	anywhere
within	or	onto	the	surface	of	the	spheres.	But	because	the	charges	try	to
get	as	far	away	from	each	other	as	possi-ble,	the	charge	will	end	up	on
the	surface	of	the	spheres.	This	is	actually	a	property	of	conductors—
charge	will	always	reside	on	the	surface	of	the	conductor,	not	inside.

(c)			Charge	will	flow	from	the	smaller	sphere	to	the	larger	sphere.	Following
the	reasoning	from	parts	(a)	and	(b),	the	charges	try	to	get	as	far	away
from	each	other	as	possible.	Because	both	spheres	initially	carry	the	same



charge,	the	charge	is	more	concentrated	on	the	smaller	sphere;	so	the
charge	will	flow	to	the	bigger	sphere	to	spread	out.	(The	explanation	that
negative	charge	flows	from	low	to	high	potential,	and	that	potential	is
less	negative	at	the	surface	of	the	bigger	sphere,	is	also	acceptable	here.)

(d)			The	charge	will	flow	until	the	potential	is	equal	on	each	sphere.	By
definition,	negative	charges	flow	from	low	to	high	potential.	So,	if	the
potentials	of	the	spheres	are	equal,	no	more	charge	will	flow.

(e)			The	potential	at	the	surface	of	each	sphere	is	−kQ	/r	,	where	r	is	the	radius
of	the	sphere.	Thus,	the	potential	at	the	surface	of	the	smaller	sphere	is
initially	more	negative,	and	the	charge	will	initially	flow	low-to-high
potential	to	the	larger	sphere.

	Rapid	Review

•			Matter	is	made	of	protons,	neutrons,	and	electrons.	Protons	are	positively
charged,	neutrons	have	no	charge,	and	electrons	are	negatively	charged.

•			Like	charges	repel,	opposite	charges	attract.

•			An	induced	charge	can	be	created	in	an	electrically	neutral	object	by	placing
that	object	in	an	electric	field.

•			Electric	field	lines	are	drawn	from	positive	charges	toward	negative	charges.
Where	an	electric	field	is	stronger,	the	field	lines	are	drawn	closer	together.

•			The	electric	force	on	an	object	depends	on	both	the	object’s	charge	and	the
electric	field	it	is	in.

•			Unless	stated	otherwise,	the	zero	of	electric	potential	is	at	infinity.

•			Equipotential	lines	show	all	the	points	where	a	charged	object	would	feel	the
same	electric	force.	They	are	always	drawn	perpendicular	to	electric	field
lines.

•			The	electric	field	between	two	charged	parallel	plates	is	constant.	The	electric
field	around	a	charged	particle	depends	on	the	distance	from	the	particle.

•			Gauss’s	law	says	that	the	net	electric	flux	through	a	closed	surface	is	equal	to
the	charge	enclosed	divided	by	ε	0	.	To	solve	a	problem	using	Gauss’s	law,
look	for	planar,	cylindrical,	or	spherical	symmetry.



1	The	actual	equation	sheet	for	the	AP	exam	includes	this	equation:	 	.	To	interpret	this

(and	other	point	charge	equations),	recognize	that	this	equation	for	the	force	between	two	point	charges	is

an	amalgamation	of	the	first	two	equations	above:	combine	F	=	qE	with	 	and	you	get	

	.

2	For	calculations,	it	might	be	easier	to	recognize	that	 	.	This	value,	often	labeled	as

k	,	shows	up	repeatedly	in	point-charge	problems.



CHAPTER 	 18

Electrostatics

1	.				A	cubic	Gaussian	surface	of	side	length	x	sits	centered	in	a	uniform	electric
field	(E)	between	two	capacitor	plates.	The	net	electric	flux	through	the
Gaussian	surface	is
(A)			0
(B)			Ex2

(C)			2Ex2

(D)			4Ex2

(E)			6Ex2



2	.				Two	spheres	with	charges	+Q	and	–Q	of	equal	magnitude	are	placed	a
vertical	distance	of	d	apart	on	the	y	-axis,	as	shown	in	the	figure.	A	third
charge	of	+q	is	brought	from	a	distance	of	x	,	where	x	>>d	,	horizontally
toward	the	midpoint	between	+Q	and	–Q.	The	net	force	on	+q	as	it	is	moved
to	the	left	along	the	x	-axis
(A)			increases	and	continues	in	the	same	direction.
(B)			increases	and	changes	direction.
(C)			remains	the	same	magnitude	and	continues	in	the	same	direction.
(D)			decreases	and	continues	in	the	same	direction.
(E)			decreases	and	changes	direction.

3	.				An	electron	of	charge	–e	and	mass	m	is	launched	with	a	velocity	of	v	0
through	a	small	hole	in	the	right	plate	of	a	parallel	plate	capacitor	toward	the
opposite	plate	a	distance	of	d	away.	The	electric	potential	of	both	plates	are
equal	in	magnitude	but	opposite	in	sign	±V	,	as	shown	in	the	figure.	The
velocity	of	the	electron	as	it	reaches	the	left	plate	is

(A)			



(B)			

(C)			

(D)			

(E)			

4	.				Two	metal	spheres	with	different	radii	but	the	same	charge	(+Q)	are
separated	by	a	distance	of	d	,	which	is	much	greater	than	their	combined
radii.	The	two	spheres	exert	a	force	of	F	on	each	other.	They	are	brought	into
contact	and	then	again	placed	a	distance	of	d	apart.	The	new	force	between
the	spheres	is

(A)			

(B)			

(C)			

(D)			

(E)			



	Answers

1	.				A	—The	uniform	electric	field	is	downward	from	the	positive	plate	to	the
negative	plate.	The	top	surface	has	a	negative	electric	flux	of	–Ex2	because
the	E-field	is	passing	into	the	closed	Gaussian	surface.	The	bottom	surface	of
the	cube	will	have	a	positive	electric	flux	of	+Ex2	as	the	E-field	is	passing
out	of	the	closed	Gaussian	surface.	The	four	sides	of	the	cube	have	no	flux
because	the	E-field	does	not	pass	through	the	Gaussian	surface.	Thus,	the	net
flux	for	the	entire	surface	is	zero.	A	more	elegant	solution	method	is	to	use

Gauss’s	law:	 	.	All	of	the	charge	is	spread	across	the

capacitor	plates.	Since	there	is	no	charge	enclosed	in	the	Gaussian	surface,
the	net	flux	must	be	zero.

2	.				A	—In	the	original	location	x	,	the	two	electrostatic	forces	on	+q	add	up,	as
shown	in	the	figure	on	the	left.	As	the	charge	+q	is	moved	toward	+Q	and	–
Q,	the	electrostatic	forces	increase	in	strength,	and	their	direction	shifts	as
shown	in	the	figure	on	the	right.	Thus,	the	net	force	increases	in	strength	but
continues	to	point	directly	downward	due	to	the	symmetry	of	the	charge
arrangement.

3	.				B	—Using	conservation	of	energy,	the	change	in	electrostatic	potential
energy	plus	the	initial	kinetic	energy	equals	the	final	kinetic	energy:



Note:	Please	be	careful	with	your	signs	of	the	potential	and	electron	charge!

4	.				C	—The	original	force	between	the	spheres	is

When	the	spheres	are	brought	into	contact,	they	share	a	charge	until	they
have	the	same	electric	potential:

In	addition,	we	know	that	Q1	and	Q2	must	add	up	to	be	the	total	original
charge	of	2Q:

Q	1	+	Q	2	=	2Q

Substituting,	we	get



Calculating	the	new	electrostatic	force,	we	get	the	following:



CHAPTER 	 19

Circuits

IN	THIS	CHAPTER

Summary:	Electric	charge	flowing	through	a	wire	is	called	current.	An	electrical	circuit	is	built	to	control
current.	In	this	chapter,	you	will	learn	how	to	predict	the	effects	of	current	flow.

Key	Ideas
		The	current	in	series	resistors	is	the	same	through	each,	whereas	the	voltage
across	series	resistors	adds	to	the	total	voltage.
		The	voltage	across	parallel	resistors	is	the	same	across	each,	whereas	the
current	through	parallel	resistors	adds	to	the	total	current.
		The	brightness	of	a	light	bulb	depends	on	the	power	dissipated	by	the	bulb.
		A	capacitor	blocks	current	once	it	has	been	connected	for	a	while.
		Physics	C	students	need	to	know	that	the	time	constant	of	an	RC	circuit	is	RC
.

Relevant	Equations
Definition	of	current:



Resistance	of	a	wire	in	terms	of	its	properties:

Ohm’s	law:

V	=	IR

Power	in	a	circuit:

P	=	IV

Time	constant	for	an	RC	circuit:

τ	=	RC

In	the	last	chapter,	we	talked	about	situations	where	electric	charges	don’t	move
around	very	much.	Isolated	point	charges,	for	example,	just	sit	there	creating	an
electric	field.	But	what	happens	when	you	get	a	lot	of	charges	all	moving
together?	That,	at	its	essence,	is	what	goes	on	in	a	circuit.

Besides	discussing	circuits	in	general,	this	chapter	presents	a	powerful
problem-solving	technique:	the	V-I-R	chart.	As	with	the	chart	of	variables	we
used	when	solving	kinematics	problems,	the	V-I-R	chart	is	an	incredibly
effective	way	to	organize	a	problem	that	involves	circuits.	We	hope	you’ll	find	it
helpful.

Current
A	circuit	is	simply	any	path	that	will	allow	charge	to	flow.

Current:	The	flow	of	electric	charge.	In	a	circuit,	the	current	is	the	amount	of
charge	passing	a	given	point	per	unit	time.

Technically,	a	current	is	defined	as	the	flow	of	positive	charge.	We	don’t	think
this	makes	sense,	because	electrons—and	not	protons	or	positrons—are	what
flow	in	a	circuit.	But	physicists	have	their	rationale,	and	no	matter	how	wacky,
we	won’t	argue	with	it.



In	more	mathematical	terms,	current	is	defined	as	follows:

What	this	means	is	that	the	current,	I	,	equals	the	amount	of	charge	flowing	past
a	certain	point	divided	by	the	time	interval	during	which	you’re	making	your
measurement.	This	definition	tells	us	that	current	is	measured	in
coulombs/second.	1	C/s	=	1	ampere,	abbreviated	as	1	A.

Resistance	and	Ohm’s	Law
You’ve	probably	noticed	that	just	about	every	circuit	drawn	in	your	physics	book
contains	a	battery.	The	reason	most	circuits	contain	a	battery	is	because	batteries
create	a	potential	difference	between	one	end	of	the	circuit	and	the	other.	In	other
words,	if	you	connect	the	terminals	of	a	battery	with	a	wire,	the	part	of	the	wire
attached	to	the	“+”	terminal	will	have	a	higher	electric	potential	than	the	part	of
the	wire	attached	to	the	“−”	terminal.	And	positive	charge	flows	from	high
potential	to	low	potential.	So,	in	order	to	create	a	current,	you	need	a	battery.
(See	Figure	19.1	.)

Figure	19.1			Flow	of	charge	in	a	wire	connected	to	a	battery.

In	general,	the	greater	the	potential	difference	between	the	terminals	of	the
battery,	the	more	current	flows.

The	amount	of	current	that	flows	in	a	circuit	is	also	determined	by	the



resistance	of	the	circuit.

Resistance:	A	property	of	a	circuit	that	resists	the	flow	of	current

Resistance	is	measured	in	ohms.	1	ohm	is	abbreviated	as	1	Ω.
If	we	have	some	length	of	wire,	then	the	resistance	of	that	wire	can	be

calculated.	Three	physical	properties	of	the	wire	affect	its	resistance:

•			The	material	the	wire	is	made	out	of:	the	resistivity	,	ρ	,	of	a	material	is
an	intrinsic	property	of	that	material.	Good	conducting	materials,	like
gold,	have	low	resistivities.	1

•			The	length	of	the	wire,	L	:	the	longer	the	wire,	the	more	resistance	it	has.
•			The	cross-sectional	area	A	of	the	wire:	the	wider	the	wire,	the	less
resistance	it	has.

We	put	all	of	these	properties	together	in	the	equation	for	resistance	of	a	wire:

Now,	this	equation	is	useful	only	when	you	need	to	calculate	the	resistance	of	a
wire	from	scratch.	Usually,	on	the	AP	exam	or	in	the	laboratory,	you	will	be
using	resistors	that	have	a	pre-measured	resistance.

Resistor:	Something	you	put	in	a	circuit	to	change	the	circuit’s
resistance

Resistors	are	typically	ceramic,	a	material	that	doesn’t	allow	current	to	flow
through	it	very	easily.	Another	common	type	of	resistor	is	the	filament	in	a	light
bulb.	When	current	flows	into	a	light	bulb,	it	gets	held	up	in	the	filament.	While
it’s	hanging	out	in	the	filament,	it	makes	the	filament	extremely	hot,	and	the
filament	gives	off	light.

The	way	that	a	resistor	(or	a	bunch	of	resistors)	affects	the	current	in	a	circuit
is	described	by	Ohm’s	law.

V	is	the	voltage	across	the	part	of	the	circuit	you’re	looking	at,	I	is	the



current	flowing	through	that	part	of	the	circuit,	and	R	is	the	resistance	in	that	part
of	the	circuit.	Ohm’s	law	is	the	most	important	equation	when	it	comes	to
circuits,	so	make	sure	you	know	it	well.

When	current	flows	through	a	resistor,	electrical	energy	is	being	converted
into	heat	energy.	The	rate	at	which	this	conversion	occurs	is	called	the	power
dissipated	by	a	resistor.	This	power	can	be	found	with	the	equation

This	equation	says	that	the	power,	P	,	dissipated	in	part	of	a	circuit	equals	the
current	flowing	through	that	part	of	the	circuit	multiplied	by	the	voltage	across
that	part	of	the	circuit.

Using	Ohm’s	law,	it	can	be	easily	shown	that	IV	=	I	2	R	=	V	2	/R	.	It’s	only
worth	memorizing	the	first	form	of	the	equation,	but	any	one	of	these	could	be
useful.

Resistors	in	Series	and	in	Parallel
In	a	circuit,	resistors	can	either	be	arranged	in	series	with	one	another	or	parallel
to	one	another.	Before	we	take	a	look	at	each	type	of	arrangement,	though,	we
need	first	to	familiarize	ourselves	with	circuit	symbols,	shown	in	Figure	19.2	.



Figure	19.2			Common	circuit	symbols.

First,	let’s	examine	resistors	in	series.	In	this	case,	all	the	resistors	are	connected
in	a	line,	one	after	the	other	after	the	other:

To	find	the	equivalent	resistance	of	series	resistors,	we	just	add	up	all	the
individual	resistors.

For	the	circuit	in	Figure	19.3	,	R	eq	=	3000	Ω.	In	other	words,	using	three	1000	Ω
resistors	in	series	produces	the	same	total	resistance	as	using	one	3000	Ω
resistor.



Figure	19.3			Example	of	series	resistors.

Parallel	resistors	are	connected	in	such	a	way	that	you	create	several	paths
through	which	current	can	flow.	For	the	resistors	to	be	truly	in	parallel,	the
current	must	split,	then	immediately	come	back	together.

The	equivalent	resistance	of	parallel	resistors	is	found	by	this	formula:

For	the	circuit	in	Figure	19.4	,	the	equivalent	resistance	is	333	Ω.	So	hooking	up
three	1000	Ω	resistors	in	parallel	produces	the	same	total	resistance	as	using	one
333	Ω	resistor.	(Note	that	the	equivalent	resistance	of	parallel	resistors	is	less
than	any	individual	resistor	in	the	parallel	combination.)



Figure	19.4			Example	of	parallel	resistors.

A	Couple	of	Important	Rules
Rule	#1	—When	two	resistors	are	connected	in	SERIES,	the	amount	of	current
that	flows	through	one	resistor	equals	the	amount	of	current	that	flows	through
the	other	resistor.

Rule	#2	—When	two	resistors	are	connected	in	PARALLEL,	the	voltage	across
one	resistor	is	the	same	as	the	voltage	across	the	other	resistor,	and	is	equal	to
the	total	voltage	across	the	parallel	combination.

The	V-I-R	Chart
Here	it	is—the	trick	that	will	make	solving	circuits	a	breeze.	Use	this	method	on
your	homework.	Use	this	method	on	your	quizzes	and	tests.	But	most	of	all,	use
this	method	on	the	AP	exam.	It	works.

The	easiest	way	to	understand	the	V-I-R	chart	is	to	see	it	in	action,	so	we’ll
go	through	a	problem	together,	filling	in	the	chart	at	each	step	along	the	way.

Find	the	voltage	across	each	resistor	in	the	circuit	shown	below.

We	start	by	drawing	our	V-I-R	chart,	and	we	fill	in	the	known	values.	Right	now,
we	know	the	resistance	of	each	resistor,	and	we	know	the	total	voltage	(it’s
written	next	to	the	battery).



Next,	we	simplify	the	circuit.	This	means	that	we	calculate	the	equivalent
resistance	and	redraw	the	circuit	accordingly.	We’ll	first	find	the	equivalent
resistance	of	the	parallel	part	of	the	circuit:

Use	your	calculator	to	get	

Taking	the	reciprocal	and	rounding	to	1	significant	figure,	we	get

R	eq	=	4	Ω.

So	we	can	redraw	our	circuit	like	this:

Next,	we	calculate	the	equivalent	resistance	of	the	entire	circuit.	Following	our
rule	for	resistors	in	series,	we	have

R	eq	=	4	Ω	+	5	Ω	=	9	Ω.



We	can	now	fill	this	value	into	the	V-I-R	chart.

Notice	that	we	now	have	two	of	the	three	values	in	the	“Total”	row.	Using
Ohm’s	law,	we	can	calculate	the	third.	That’s	the	beauty	of	the	V-I-R	chart:
Ohm’s	law	is	valid	whenever	two	of	the	three	entries	in	a	row	are	known	.

Then	we	need	to	put	on	our	thinking	caps.	We	know	that	all	the	current	that
flows	through	our	circuit	will	also	flow	through	R	1	(You	may	want	to	take	a
look	back	at	the	original	drawing	of	our	circuit	to	make	sure	you	understand	why
this	is	so).	Therefore,	the	I	value	in	the	“R	1	”	row	will	be	the	same	as	the	I	in	the
“Total”	row.	We	now	have	two	of	the	three	values	in	the	“R	1	”	row,	so	we	can
solve	for	the	third	using	Ohm’s	law.

Finally,	we	know	that	the	voltage	across	R	2	equals	the	voltage	across	R	3	,
because	these	resistors	are	connected	in	parallel.	The	total	voltage	across	the
circuit	is	12	V,	and	the	voltage	across	R	1	is	6.5	V.	So	the	voltage	that	occurs
between	R	1	and	the	end	of	the	circuit	is

12	V	−	6.5	V	=	5.5	V.

Therefore,	the	voltage	across	R	2	,	which	is	the	same	as	the	voltage	across	R	3	,	is



5.5	V.	We	can	fill	this	value	into	our	table.	Finally,	we	can	use	Ohm’s	law	to
calculate	I	for	both	R	2	and	R	3	.	The	finished	V-I-R	chart	looks	like	this:

To	answer	the	original	question,	which	asked	for	the	voltage	across	each	resistor,
we	just	read	the	values	straight	from	the	chart.

Now,	you	might	be	saying	to	yourself,	“This	seems	like	an	awful	lot	of	work
to	solve	a	relatively	simple	problem.”	You’re	right—it	is.

However,	there	are	several	advantages	to	the	V-I-R	chart.	The	major
advantage	is	that,	by	using	it,	you	force	yourself	to	approach	every	circuit
problem	exactly	the	same	way.	So	when	you’re	under	pressure—as	you	will	be
during	the	AP	exam—you’ll	have	a	tried-and-true	method	to	turn	to.

Also,	if	there	are	a	whole	bunch	of	resistors,	you’ll	find	that	the	V-I-R	chart
is	a	great	way	to	organize	all	your	calculations.	That	way,	if	you	want	to	check
your	work,	it’ll	be	very	easy	to	do.

Finally,	free-response	problems	that	involve	circuits	generally	ask	you
questions	like	these.

(a)	What	is	the	voltage	across	each	resistor?
(b)	What	is	the	current	flowing	through	resistor	#4?
(c)	What	is	the	power	dissipated	by	resistor	#2?

By	using	the	V-I-R	chart,	you	do	all	your	calculations	once,	and	then	you	have
all	the	values	you	need	to	solve	any	question	that	the	AP	writers	could	possibly
throw	at	you.

Tips	for	Solving	Circuit	Problems	Using	the	V-I-R	Chart
•			First,	enter	all	the	given	information	into	your	chart.	If	resistors	haven’t
already	been	given	names	(like	“R	1	”),	you	should	name	them	for	easy
reference.



•			Next	simplify	the	circuit	to	calculate	R	eq	,	if	possible.
•			Once	you	have	two	values	in	a	row,	you	can	calculate	the	third	using	Ohm’s
law.	You	CANNOT	use	Ohm’s	law	unless	you	have	two	of	the	three	values	in	a
row	.

•			Remember	that	if	two	resistors	are	in	series,	the	current	through	one	of	them
equals	the	current	through	the	other.	And	if	two	resistors	are	in	parallel,	the
voltage	across	one	equals	the	voltage	across	the	other.

Kirchoff’s	Laws
Kirchoff’s	laws	help	you	solve	complicated	circuits.	They	are	especially	useful
if	your	circuit	contains	two	batteries.

Kirchoff’s	laws	say:

1.			At	any	junction,	the	current	entering	equals	the	current	leaving.
2.			The	sum	of	voltages	around	a	closed	loop	is	0.

The	first	law	is	called	the	“junction	rule,”	and	the	second	is	called	the	“loop
rule.”	To	illustrate	the	junction	rule,	we’ll	revisit	the	circuit	from	our	first
problem.	(See	Figure	19.5	.)

Figure	19.5			Circuit	illustrating	Kirchoff’s	junction	rule.

According	to	the	junction	rule,	whatever	current	enters	Junction	“A”	must	also
leave	Junction	“A.”	So	let’s	say	that	1.25	A	enters	Junction	“A,”	and	then	that
current	gets	split	between	the	two	branches.	If	we	measured	the	current	in	the



top	branch	and	the	current	in	the	bottom	branch,	we	would	find	that	the	total
current	equals	1.25	A.	And,	in	fact,	when	the	two	branches	came	back	together
at	Junction	“B,”	we	would	find	that	exactly	1.25	A	was	flowing	out	through
Junction	“B”	and	through	the	rest	of	the	circuit.

Kirchoff’s	junction	rule	says	that	charge	is	conserved:	you	don’t	lose	any
current	when	the	wire	bends	or	branches.	This	seems	remarkably	obvious,	but
it’s	also	remarkably	essential	to	solving	circuit	problems.

Kirchoff’s	loop	rule	is	a	bit	less	self-evident,	but	it’s	quite	useful	in	sorting
out	difficult	circuits.

As	an	example,	we’ll	show	you	how	to	use	Kirchoff’s	loop	rule	to	find	the
current	through	all	the	resistors	in	the	circuit.

We	will	follow	the	steps	for	using	Kirchoff’s	loop	rule:

•			Arbitrarily	choose	a	direction	of	current.	Draw	arrows	on	your	circuit	to
indicate	this	direction.

•			Follow	the	loop	in	the	direction	you	chose.	When	you	cross	a	resistor,	the
voltage	is	−IR	,	where	R	is	the	resistance,	and	I	is	the	current	flowing	through
the	resistor.	This	is	just	an	application	of	Ohm’s	law.	(If	you	have	to	follow	a
loop	against	the	current,	though,	the	voltage	across	a	resistor	is	written	+IR	.)

•			When	you	cross	a	battery,	if	you	trace	from	the	−	to	the	+	add	the	voltage	of
the	battery,	subtract	the	battery’s	voltage	if	you	trace	from	+	to	−.

•			Set	the	sum	of	your	voltages	equal	to	0.	Solve.	If	the	current	you	calculate	is
negative,	then	the	direction	you	chose	was	wrong—the	current	actually	flows
in	the	direction	opposite	to	your	arrows.

In	the	case	of	Figures	19.6a	and	19.6b	,	we’ll	start	by	collapsing	the	two	parallel
resistors	into	a	single	equivalent	resistor	of	170	Ω.	You	don’t	have	to	do	this,	but
it	makes	the	mathematics	much	simpler.



Figure	19.6a			Example	circuit	for	using	Kirchoff’s	loop	rule.

Figure	19.6b			Circuit	ready	for	analysis	via	Kirchoff’s	loop	rule.

Next,	we’ll	choose	a	direction	of	current	flow.	But	which	way?	In	this
particular	case,	you	can	probably	guess	that	the	9-V	battery	will	dominate	the
1.5-V	battery,	and	thus	the	current	will	be	clockwise.	But	even	if	you	aren’t	sure,
just	choose	a	direction	and	stick	with	it—if	you	get	a	negative	current,	you	chose
the	wrong	direction.

Here	is	the	circuit	redrawn	with	the	parallel	resistors	collapsed	and	the



assumed	direction	of	current	shown.	Because	there’s	now	only	one	path	for
current	to	flow	through,	we	have	labeled	that	current	I	.

Now	let’s	trace	the	circuit,	starting	at	the	top	left	corner	and	working
clockwise:

•			The	170	Ω	resistor	contributes	a	term	of	−(170	Ω)	I	.
•			The	1.5-V	battery	contributes	the	term	of	−1.5	volts.
•			The	100	Ω	resistor	contributes	a	term	of	−(100	Ω)	I	.
•			The	200	Ω	resistor	contributes	a	term	of	−(200	Ω)	I	.
•			The	9-V	battery	contributes	the	term	of	+9	volts.

Combine	all	the	individual	terms,	and	set	the	result	equal	to	zero.	The	units	of
each	term	are	volts,	but	units	are	left	off	below	for	algebraic	clarity:

0	=	(−170)I	+	(−1.5)	+	(−100)I	+	(−200)I	+	(+9).

By	solving	for	I	,	the	current	in	the	circuit	is	found	to	be	0.016	A;	that	is,	16
milliamps,	a	typical	laboratory	current.

The	problem	is	not	yet	completely	solved,	though—16	milliamps	go	through
the	100	Ω	and	200	Ω	resistors,	but	what	about	the	300	Ω	and	400	Ω	resistors?
We	can	find	that	the	voltage	across	the	170	Ω	equivalent	resistance	is	(0.016	A)
(170	Ω)	=	2.7	V.	Because	the	voltage	across	parallel	resistors	is	the	same	for
each,	the	current	through	each	is	just	2.7	V	divided	by	the	resistance	of	the	actual
resistor:	2.7	V/300	Ω	=	9	mA,	and	2.7	V/400	Ω	=	7	mA.	Problem	solved!

Oh,	and	you	might	notice	that	the	9	mA	and	7	mA	through	each	of	the
parallel	branches	adds	to	the	total	of	16	mA—as	required	by	Kirchoff’s	junction
rule.

Circuits	from	an	Experimental	Point	of	View
When	a	real	circuit	is	set	up	in	the	laboratory,	it	usually	consists	of	more	than
just	resistors—light	bulbs	and	motors	are	common	devices	to	hook	to	a	battery,
for	example.	For	the	purposes	of	computation,	though,	we	can	consider	pretty
much	any	electronic	device	to	act	like	a	resistor.

But	what	if	your	purpose	is	not	computation?	Often	on	the	AP	exam,	as	in
the	laboratory,	you	are	asked	about	observational	and	measurable	effects.	The
most	common	questions	involve	the	brightness	of	light	bulbs	and	the
measurement	(not	just	computation)	of	current	and	voltage.



Brightness	of	a	Bulb
The	brightness	of	a	bulb	depends	solely	on	the	power	dissipated	by	the	bulb.
(Remember,	power	is	given	by	any	of	the	equations	I	2	R,	IV	,	or	V	2	/R	).	You
can	remember	that	from	your	own	experience—when	you	go	to	the	store	to	buy
a	light	bulb,	you	don’t	ask	for	a	“400-ohm”	bulb,	but	for	a	“100-watt”	bulb.	And
a	100-watt	bulb	is	brighter	than	a	25-watt	bulb.	But	be	careful—a	bulb’s	power
can	change	depending	on	the	current	and	voltage	it’s	hooked	up	to.	Consider	this
problem.

A	light	bulb	is	rated	at	100	W	in	the	United	States,	where	the	standard	wall
outlet	voltage	is	120	V.	If	this	bulb	were	plugged	in	in	Europe,	where	the
standard	wall	outlet	voltage	is	240	V,	which	of	the	following	would	be	true?

(A)	The	bulb	would	be	one-quarter	as	bright.
(B)	The	bulb	would	be	one-half	as	bright.
(C)	The	bulb’s	brightness	would	be	the	same.
(D)	The	bulb	would	be	twice	as	bright.
(E)	The	bulb	would	be	four	times	as	bright.

Your	first	instinct	might	be	to	say	that	because	brightness	depends	on	power,	the
bulb	is	exactly	as	bright.	But	that’s	not	right!	The	power	of	a	bulb	can	change.

The	resistance	of	a	light	bulb	is	a	property	of	the	bulb	itself,	and	so	will	not
change	no	matter	what	the	bulb	is	hooked	to.

Since	the	resistance	of	the	bulb	stays	the	same	while	the	voltage	changes,	by	V	2
/R	,	the	power	goes	up,	and	the	bulb	will	be	brighter.	How	much	brighter?	Since
the	voltage	in	Europe	is	doubled,	and	because	voltage	is	squared	in	the	equation,
the	power	is	multiplied	by	4—choice	E.

Ammeters	and	Voltmeters
Ammeters	measure	current,	and	voltmeters	measure	voltage.	This	is	pretty
obvious,	because	current	is	measured	in	amps,	voltage	in	volts.	It	is	not
necessarily	obvious,	though,	how	to	connect	these	meters	into	a	circuit.

Remind	yourself	of	the	properties	of	series	and	parallel	resistors—voltage	is
the	same	for	any	resistors	in	parallel	with	each	other.	So	if	you’re	going	to
measure	the	voltage	across	a	resistor,	you	must	put	the	voltmeter	in	parallel	with



the	resistor.	In	Figure	19.7	,	the	meter	labeled	V2	measures	the	voltage	across	the
100	Ω	resistor,	while	the	meter	labeled	V1	measures	the	potential	difference
between	points	A	and	B	(which	is	also	the	voltage	across	R	1	).

Figure	19.7			Measuring	voltage	with	a	voltmeter.

Current	is	the	same	for	any	resistors	in	series	with	one	another.	So,	if	you’re
going	to	measure	the	current	through	a	resistor,	the	ammeter	must	be	in	series
with	that	resistor.	In	Figure	19.8	,	ammeter	A1	measures	the	current	through
resistor	R	1	,	while	ammeter	A2	measures	the	current	through	resistor	R	2	.



Figure	19.8			Measuring	current	with	an	ammeter.

As	an	exercise,	ask	yourself,	is	there	a	way	to	figure	out	the	current	in	the	other
three	resistors	based	only	on	the	readings	in	these	two	ammeters?	The	answer	is
in	the	footnote.	2

RC	Circuits:	Steady-State	Behavior
When	you	have	both	resistors	and	capacitors	in	a	circuit,	the	circuit	is	called	an
“RC	circuit.”	If	you	remember,	we	introduced	capacitors	in	Chapter	18	,	when
we	talked	about	charged,	parallel	plates.

The	simplest	problems	with	capacitors	in	circuits	involve	“steady-state
behavior.”	This	just	means	that	the	circuit	has	been	connected	for	a	while.	In
these	cases,	the	only	thing	you’ll	generally	need	to	worry	about	is	how	to	deal
with	capacitors	in	series	and	in	parallel.

When	capacitors	occur	in	series,	you	add	them	inversely.	The	charge	stored
on	each	capacitor	in	series	must	be	the	same.

For	the	circuit	in	Figure	19.9	,	the	equivalent	capacitance	is	C	eq	=	1.5	μF.

Figure	19.9			Example	of	capacitors	in	series.

When	capacitors	occur	in	parallel,	you	add	them	algebraically.	The	voltage
across	each	capacitor	in	parallel	must	be	the	same.



The	equivalent	capacitance	for	the	circuit	in	Figure	19.10	is	18	μF.

Figure	19.10			Example	of	capacitors	in	parallel.

You	should	also	know	that	the	energy	stored	by	a	capacitor	is

Once	the	circuit	has	been	connected	for	a	long	time,	capacitors	stop	current
from	flowing.	To	find	the	charge	stored	on	or	the	voltage	across	a	capacitor,	just
use	the	equation	for	capacitors,	Q	=	CV	.

For	example,	imagine	that	you	hook	up	a	10-V	battery	to	a	5	Ω	resistor	in
series	with	an	uncharged	1	F	capacitor.	(1	F	capacitors	are	rarely	used	in	actual
electronics	application—most	capacitances	are	micro-	or	nanofarads—but	they
are	commonly	used	for	physics	class	demonstrations!)	When	the	circuit	is	first
hooked	up,	the	capacitor	is	empty—it	is	ready	and	waiting	for	as	much	charge	as
can	flow	to	it.	Thus,	initially,	the	circuit	behaves	as	if	the	capacitor	weren’t	there.
In	this	case,	then,	the	current	through	the	resistor	starts	out	at	10	V/5	Ω	=	2	A.



But,	after	a	long	time,	the	capacitor	blocks	current.	The	resistor	might	as	well
not	be	there;	we	might	as	well	just	have	a	capacitor	right	across	the	battery.	After
a	long	time,	the	capacitor	takes	on	the	voltage	of	the	battery,	10	V.	(So	the	charge
stored	on	the	capacitor	is	Q	=	CV	=	10	C.)

RC	Circuits:	Transitional	Behavior
Okay,	the	obvious	question	here	is,	“What	happens	during	the	in-between	times,
while	the	capacitor	is	charging?”	That’s	a	more	complicated	question,	one	that	is
approached	in	Physics	C.	It’s	easiest	if	we	start	with	a	discussion	of	a	capacitor
discharging	.	(See	Figure	19.11	.)

Figure	19.11			Graph	of	a	capacitor	discharging.

Consider	a	circuit	with	just	a	resistor	R	and	a	capacitor	C.	(That’s	what	we
mean	by	an	RC	circuit.)	The	capacitor	is	initially	charged	with	charge	Q	0	.
Apply	Kirchoff’s	voltage	rule:

−IR	+	V	c	=	0

where	V	c	is	the	voltage	across	the	capacitor,	equal	to	Q	/C	by	the	equation	for



capacitors.
By	definition,	current	is	the	time	derivative	of	charge,

So	substituting	this	value	for	I	into	the	Kirchoff	equation	we	wrote	above,	and
rearranging	a	bit,	we	get

This	is	a	differential	equation.	On	the	AP	exam	you	will	only	rarely	have	to	carry
out	the	algorithmic	solution	to	such	an	equation;	however,	you	must	recognize
that	the	solution	will	have	an	exponential	term,	and	you	should	be	able	to	use
limiting	case	reasoning	to	guess	at	the	precise	form	of	the	solution.	See	the
section	on	air	resistance	in	Chapter	11	for	details.

Here,	the	charge	on	the	capacitor	as	a	function	of	time	is	Q	=	Q	0	e	−	t	/	RC	.
What	does	this	mean?

Well,	look	at	the	limiting	cases.	At	the	beginning	of	the	discharge,	when	t	=
0,	the	exponential	term	becomes	e	0	=	1;	so	Q	=	Q	0	,	as	expected.	After	a	long
time,	the	exponential	term	becomes	very	small	(e	gets	raised	to	a	large	negative
power),	and	the	charge	goes	to	zero	on	the	capacitor.	Of	course—that’s	what	is
meant	by	discharging.

And	in	between	times?	Try	graphing	this	on	your	calculator.	You	get	a
function	that	looks	like	exponential	decay.

What’s	cool	here	is	that	the	product	RC	has	special	meaning.	The	units	of	RC
are	seconds:	this	is	a	time.	RC	is	called	the	time	constant	of	the	RC	circuit.	The
time	constant	gives	us	an	idea	of	how	long	it	will	take	to	charge	or	discharge	a
capacitor.	(Specifically,	after	one	time	constant	the	capacitor	will	have	1/e	=	37%
of	its	original	charge	remaining;	if	the	capacitor	is	charging	rather	than
discharging,	it	will	have	charged	to	63%	of	its	full	capacity.)

So	there’s	no	need	to	memorize	the	numerous	complicated	exponential
expressions	for	charge,	voltage,	and	current	in	an	RC	circuit.	Just	remember	that
all	these	quantities	vary	exponentially,	and	approach	the	“after	a	long	time”
values	asymptotically.

What	does	the	graph	of	charge	vs.	time	for	a	charging	capacitor	look	like?
(See	Figure	19.12	.)	Think	about	it	a	moment.	At	t	=	0,	there	won’t	be	any



charge	on	the	capacitor,	because	you	haven’t	started	charging	it	yet.	And	after	a
long	time,	the	capacitor	will	be	fully	charged,	and	you	won’t	be	able	to	get	more
charge	onto	it.	So	the	graph	must	start	at	zero	and	increase	asymptotically.

Figure	19.12			Graph	of	a	capacitor	charging.

The	charge	asymptotically	approaches	the	maximum	value,	which	is	equal	to	CV
(V	is	the	final	voltage	across	the	capacitor).	After	one	time	constant,	the	charge
is	1/e	=	37%	away	from	its	maximum	value.

Inductors	in	Circuits
An	inductor	makes	use	of	induced	EMF	(see	Chapter	20	)	to	resist	changes	in
current	in	a	circuit.	If	part	of	a	circuit	is	coiled,	then	the	magnetic	field	produced
by	the	coils	induces	a	“back	EMF”	in	the	rest	of	the	circuit	…	that	EMF	depends
on	how	fast	the	current	is	changing,	by	Faraday’s	law.	An	inductor	in	a	circuit	is
drawn	as	a	little	coil,	as	shown	in	Figure	19.13	.

Figure	19.13			Symbol	for	an	inductor	in	a	circuit.



The	voltage	drop	across	an	inductor	is

where	L	is	called	the	inductance	of	the	inductor.	Inductance	is	measured	in	units
of	henrys.

What	does	this	equation	mean?	If	the	current	is	changing	rapidly,	as	when	a
circuit	is	first	turned	on	or	off,	the	voltage	drop	across	the	inductor	is	large;	if	the
current	is	barely	changing,	as	when	a	circuit	has	been	on	for	a	long	time,	the
inductor’s	voltage	drop	is	small.

We	can	think	of	an	inductor	as	storing	energy	in	the	magnetic	field	it	creates.
When	current	begins	to	flow	through	the	inductor,	it	stores	up	as	much	energy	as
it	can.	After	a	while,	it	has	stored	all	the	energy	it	can,	so	the	current	just	goes
through	the	inductor	without	trouble.	The	energy	stored	in	an	inductor	is	found
by	this	equation.

For	the	AP	Physics	C	exam,	you	need	to	understand	circuits	with	inductors	and
resistors,	as	well	as	circuits	with	inductors	and	capacitors.

Other	Circuits

RL	Circuits
RL	circuits	contain	just	an	inductor	and	a	resistor,	and	perhaps	a	battery,	as
shown	in	Figure	19.14	.



Figure	19.14			An	RL	circuit.

Imagine	that	we	connect	the	switch	in	the	circuit	in	Figure	19.15	at	time	t	=	0.	At
that	point,	the	current	will	change	rapidly	from	zero	to	some	nonzero	value.	So,
because	 	is	large,	the	inductor	has	a	large	voltage	drop,	the	resistor	has	very

little	voltage	drop,	and	the	current	cannot	immediately	reach	its	maximum	value.
After	a	while,	though,	the	current	changes	less	rapidly,	the	voltage	drop	across
the	inductor	becomes	small,	the	voltage	drop	across	the	resistor	gets	bigger,	and
the	current	in	the	circuit	becomes	large.

A	graph	of	current	vs.	time	for	this	circuit	is	shown	in	Figure	19.15	.

Figure	19.15			Graph	of	current	vs.	time	for	a	simple	RL	circuit.

What	would	happen	if	we	disconnected	the	battery?	Well,	the	inductor	would
discharge	its	energy	through	the	resistor.	At	first,	the	inductor	would	resist	the
decrease	in	current;	but	after	a	long	time,	the	current	would	reach	zero,	as	shown
in	Figure	19.16	.



Figure	19.16			Graph	of	current	vs.	time	for	a	simple	RL	circuit	once	the
battery	is	disconnected.

Note	that	the	current	in	an	RL	circuit	looks	much	like	that	in	an	RC	circuit.	In
fact,	we	can	define	a	time	constant	for	an	RL	circuit,	just	as	we	did	for	the	RC
circuit,	as	the	time	for	the	current	to	lose	63%	of	its	value	(or	to	reach	37%	of	its
maximum	value	when	increasing).	The	time	constant	for	an	RL	circuit	is	L/R	.

LC	Circuits
In	a	circuit	consisting	of	just	a	capacitor	and	an	inductor,	both	the	capacitor	and
inductor	try	to	store	energy.	They	take	turns	storing	the	energy	in	the	circuit—the
capacitor	charges,	then	discharges,	then	charges	again	…

In	fact,	the	charge	on	the	capacitor	oscillates	from	maximum	to	minimum
sinusoidally	with	period	 	.	You	may	have	to	write	the	solution	to	a
second-order	differential	equation,	just	like	you	did	for	the	mass	on	a	spring	in
Chapter	17	.

	Practice	Problems

Multiple	Choice:



1	.	A	100	Ω,	120	Ω,	and	150	Ω	resistor	are	connected	to	a	9-V	battery	in	the
circuit	shown	above.	Which	of	the	three	resistors	dissipates	the	most	power?

(A)	the	100	Ω	resistor
(B)	the	120	Ω	resistor
(C)	the	150	Ω	resistor
(D)	both	the	120	Ω	and	150	Ω
(E)	all	dissipate	the	same	power

2	.	A	1.0-F	capacitor	is	connected	to	a	12-V	power	supply	until	it	is	fully
charged.	The	capacitor	is	then	disconnected	from	the	power	supply,	and	used
to	power	a	toy	car.	The	average	drag	force	on	this	car	is	2	N.	About	how	far
will	the	car	go?

(A)	36	m
(B)	72	m
(C)	144	m
(D)	24	m
(E)	12	m



3	.	Three	resistors	are	connected	to	a	10-V	battery	as	shown	in	the	diagram
above.	What	is	the	current	through	the	2.0	Ω	resistor?

(A)	0.25	A
(B)	0.50	A
(C)	1.0	A
(D)	2.0	A
(E)	4.0	A

4	.	Three	capacitors	are	connected	as	shown	in	the	diagram	above.	C	1	=	2μF;	C
2	=	4μF;	C	3	=	6μF.	If	the	battery	provides	a	potential	of	9	V,	how	much
charge	is	stored	by	this	system	of	capacitors?

(A)	3.0	μC
(B)	30	μC
(C)	2.7	μC
(D)	27	μC
(E)	10	μC

5	.	What	is	the	resistance	of	an	ideal	ammeter	and	an	ideal	voltmeter?



Free	Response:
6	.

(a)			Simplify	the	above	circuit	so	that	it	consists	of	one	equivalent	resistor	and
the	battery.

(b)			What	is	the	total	current	through	this	circuit?
(c)			Find	the	voltage	across	each	resistor.	Record	your	answers	in	the	spaces

below.
Voltage	across	200	Ω	resistor:						______
Voltage	across	300	Ω	resistor:						______
Voltage	across	400	Ω	resistor:						______
Voltage	across	500	Ω	resistor:						______

(d)			Find	the	current	through	each	resistor.	Record	your	answers	in	the	spaces
below.



Current	through	200	Ω	resistor:						______
Current	through	300	Ω	resistor:						______
Current	through	400	Ω	resistor:						______
Current	through	500	Ω	resistor:						______

(e)			The	500	Ω	resistor	is	now	removed	from	the	circuit.	State	whether	the
current	through	the	200	Ω	resistor	would	increase,	decrease,	or	remain
the	same.	Justify	your	answer.

	Solutions	to	Practice	Problems

1	.	A	—On	one	hand,	you	could	use	a	V	-I	-R	chart	to	calculate	the	voltage	or
current	for	each	resistor,	then	use	P	=	IV,	I	2	R	,	or	V	2	/R	to	find	power.	On	the
other	hand,	there’s	a	quick	way	to	reason	through	this	one.	Voltage	changes
across	the	100	Ω	resistor,	then	again	across	the	parallel	combination.	Because
the	100	Ω	resistor	has	a	bigger	resistance	than	the	parallel	combination,	the
voltage	across	it	is	larger	as	well.	Now	consider	each	resistor	individually.	By
power	=	V	2	/R	,	the	100	Ω	resistor	has	both	the	biggest	voltage	and	the
smallest	resistance,	giving	it	the	most	power.

2	.	A—	The	energy	stored	by	a	capacitor	is	½CV	2	.	By	powering	a	car,	this
electrical	energy	is	converted	into	mechanical	work,	equal	to	force	times
parallel	displacement.	Solve	for	displacement,	you	get	36	m.

3	.	C	—To	use	Ohm’s	law	here,	simplify	the	circuit	to	a	10-V	battery	with	the	10
Ω	equivalent	resistance.	We	can	use	Ohm’s	law	for	the	entire	circuit	to	find
that	1.0	A	is	the	total	current.	Because	all	the	resistors	are	in	series,	this	1.0	A
flows	through	each	resistor,	including	the	2	Ω	resistor.

4	.	D	—First,	simplify	the	circuit	to	find	the	equivalent	capacitance.	The	parallel
capacitors	add	to	6	μF.	Then	the	two	series	capacitors	combine	to	3	μF.	So	we
end	up	with	9	V	across	a	3	μF	equivalent	capacitance.	By	the	basic	equation
for	capacitors,	Q	=	CV	,	the	charge	stored	on	these	capacitors	is	27	μC.

5	.	A	—An	ammeter	is	placed	in	series	with	other	circuit	components.	In	order
for	the	ammeter	not	to	itself	resist	current	and	change	the	total	current	in	the
circuit,	you	want	the	ammeter	to	have	as	little	resistance	as	possible—in	the
ideal	case,	zero	resistance.	But	a	voltmeter	is	placed	in	parallel	with	other
circuit	components.	If	the	voltmeter	has	a	low	resistance,	then	current	will
flow	through	the	voltmeter	instead	of	through	the	rest	of	the	circuit.
Therefore,	you	want	it	to	have	as	high	a	resistance	as	possible,	so	the



voltmeter	won’t	affect	the	circuit	being	measured.

6	.				(a)	Combine	each	of	the	sets	of	parallel	resistors	first.	You	get	120	Ω	for	the
first	set,	222	Ω	for	the	second	set,	as	shown	in	the	diagram	below.	These
two	equivalent	resistances	add	as	series	resistors	to	get	a	total	resistance
of	342	Ω.

(b)			Now	that	we’ve	found	the	total	resistance	and	we	were	given	the	total
voltage,	just	use	Ohm’s	law	to	find	the	total	current	to	be	0.026	A	(also
known	as	26	mA).

(c)			and	(d)	should	be	solved	together	using	a	V-I-R	chart.	Start	by	going	back
one	step	to	when	we	began	to	simplify	the	circuit:	a	9-V	battery,	a	120	Ω
combination,	and	a	222	Ω	combination,	shown	above.	The	26-mA
current	flows	through	each	of	these	…	so	use	V	=	IR	to	get	the	voltage	of
each:	3.1	V	and	5.8	V,	respectively.
Now	go	back	to	the	original	circuit.	We	know	that	voltage	is	the	same
across	parallel	resistors.	So	both	the	200	Ω	and	300	Ω	resistors	have	a
3.1-V	voltage	across	them.	Use	Ohm’s	law	to	find	that	16	mA	goes
through	the	200Ω	resistor,	and	10	mA	through	the	300Ω.	Similarly,	both
the	400Ω	and	500	Ω	resistors	must	have	5.8	V	across	them.	We	get	15
mA	and	12	mA,	respectively.

Checking	these	answers	for	reasonability:	the	total	voltage	adds	to	8.9
V,	or	close	enough	to	9.0	V	with	rounding.	The	current	through	each	set
of	parallel	resistors	adds	to	just	about	26	mA,	as	we	expect.

(e)			Start	by	looking	at	the	circuit	as	a	whole.	When	we	remove	the	500	Ω
resistor,	we	actually	increase	the	overall	resistance	of	the	circuit	because



we	have	made	it	more	difficult	for	current	to	flow	by	removing	a	parallel
path.	The	total	voltage	of	the	circuit	is	provided	by	the	battery,	which
provides	9.0	V	no	matter	what	it’s	hooked	up	to.	So	by	Ohm’s	law,	if
total	voltage	stays	the	same	while	total	resistance	increases,	total	current
must	decrease	from	26	mA.

Okay,	now	look	at	the	first	set	of	parallel	resistors.	Their	equivalent
resistance	doesn’t	change,	yet	the	total	current	running	through	them
decreases,	as	discussed	above.	Therefore,	the	voltage	across	each	resistor
decreases,	and	the	current	through	each	decreases	as	well.

	Rapid	Review

•			Current	is	the	flow	of	positive	charge.	It	is	measured	in	amperes.

•			Resistance	is	a	property	that	impedes	the	flow	of	charge.	Resistance	in	a
circuit	comes	from	the	internal	resistance	of	the	wires	and	from	special
elements	inserted	into	circuits	known	as	“resistors.”

•			Resistance	is	related	to	current	and	voltage	by	Ohm’s	law:	V	=	IR	.

•			When	resistors	are	connected	in	series,	the	total	resistance	equals	the	sum	of
the	individual	resistances.	And	the	current	through	one	resistor	equals	the
current	through	any	other	resistor	in	series	with	it.

•			When	resistors	are	connected	in	parallel,	the	inverse	of	the	total	resistance
equals	the	sum	of	the	inverses	of	the	individual	resistances.	The	voltage
across	one	resistor	equals	the	voltage	across	any	other	resistor	connected
parallel	to	it.

Exam	tip	from	an	AP	Physics	veteran:
Many	AP	problems	test	your	ability	to	use	Ohm’s	law	correctly.	Ohm’s	law
cannot	be	used	unless	the	voltage,	current,	and	resistance	all	refer	to	the	same
circuit	element;	on	a	V-I-R	chart,	this	means	that	Ohm’s	law	can	only	be	used
across	a	single	row	of	the	chart.

—Chat,	college	junior	and	physics	major

•			The	V-I-R	chart	is	a	convenient	way	to	organize	any	circuit	problem.

•			Kirchoff’s	junction	rule	says	that	any	current	coming	into	a	junction	will



leave	the	junction.	This	is	a	statement	of	conservation	of	charge.	Kirchoff’s
loop	rule	says	that	the	sum	of	the	voltages	across	a	closed	loop	equals	zero.
This	rule	is	helpful	especially	when	solving	problems	with	circuits	that
contain	more	than	one	battery.

•			Ammeters	measure	current,	and	are	connected	in	series;	voltmeters	measure
voltage,	and	are	connected	in	parallel.

•			When	capacitors	are	connected	in	series,	the	inverse	of	the	total	capacitance
equals	the	sum	of	the	inverses	of	the	individual	capacitances.	When	they	are
connected	in	parallel,	the	total	capacitance	just	equals	the	sum	of	the
individual	capacitances.

•			A	capacitor’s	purpose	in	a	circuit	is	to	store	charge.	After	it	has	been
connected	to	a	circuit	for	a	long	time,	the	capacitor	becomes	fully	charged	and
prevents	the	flow	of	current.

•			A	capacitor	gains	or	loses	charge	exponentially.	The	“time	constant”	of	an	RC
circuit	is	equal	to	the	resistance	times	the	capacitance,	and	gives	a
characteristic	time	for	the	charging	or	discharging	to	occur.

•			An	inductor	resists	the	change	of	current	in	a	circuit.	In	an	RL	circuit,	when
the	battery	is	first	connected,	the	current	increases	asymptotically	from	zero
up	to	a	final	value	of	V/R	.	When	the	battery	is	disconnected,	the	current
decreases	asymptotically	to	zero	with	a	time	constant	of	 	.	In	an	LC	circuit,

the	charge	on	the	capacitor	oscillates	from	maximum	to	minimum
sinusoidally	with	period	



1	Resistivity	would	be	given	on	the	AP	exam	if	you	need	a	value.	Nothing	here	to	memorize.
2	The	current	through	R	5	must	be	the	same	as	through	R	1,	because	both	resistors	carry	whatever	current

came	directly	from	the	battery.	The	current	through	R	3	and	R	4	can	be	determined	from	Kirchoff’s	junction
rule:	subtract	the	current	in	R	2	from	the	current	in	R	1,	and	that’s	what’s	left	over	for	the	right-hand	branch
of	the	circuit.



CHAPTER 	 19

Circuits
1	.				An	electronics	manufacturer	needs	a	1.2	Ω	resistor	for	a	phone	it	is

designing.	The	company	has	calculated	that	it	is	less	expensive	to	build	the
1.2	Ω	resistor	from	cheaper	1	Ω	and	2	Ω	resistors	than	to	purchase	the	1.2	Ω
resistor	from	a	supplier.	Which	of	the	following	resistor	arrangements	is
equivalent	to	1.2	Ω	and	is	the	most	effective	method	to	construct	the	required
resistor?

(A)			

(B)			

(C)			

(D)			



(E)			

2	.				A	circuit	has	a	battery	of	emf	ε,	three	identical	resistors	(R),	two	ammeters
(A1	and	A2	),	and	a	switch	that	is	initially	in	the	open	position,	as	shown	in
the	figure.	When	the	switch	is	closed,	what	happens	to	the	current	reading	in
the	two	ammeters?
(A)			Both	A1	and	A2	increase.
(B)			A1	increases,	and	A2	stays	the	same.
(C)			A1	increases,	and	A2	decreases.
(D)			A1	decreases,	and	A2	stays	the	same.
(E)			Both	A1	and	A2	decrease.

3	.				The	circuit	shown	in	the	figure	has	two	resistors,	an	uncharged	capacitor,	a
battery,	an	ammeter,	and	a	switch	that	is	initially	in	the	open	position.	When
the	switch	is	closed,	which	graph	best	represents	the	current	measured	in	the
ammeter	(A)?



(A)			

(B)			

(C)			

(D)			

(E)			

4	.				The	circuit	shown	in	the	figure	has	a	battery	with	an	emf	of	24	V	and	an



internal	resistance	of	1	Ω.	When	operating	as	shown,	what	is	the	terminal
voltage	(VXY	)	of	the	battery?

(A)			24	V
(B)			18	V
(C)			16	V
(D)			8	V
(E)			6	V

	Answers

1	.				D	—Adding	the	1	Ω	and	2	Ω	resistor	in	series	produces	an	equivalent
resistance	of	3	Ω.	Next,	add	the	resulting	3	Ω	resistor	to	the	2	Ω	resistor	in
parallel	to	produce	the	required	1.2	Ω	resistor:

Note	that	both	choices	A	and	D	will	produce	an	equivalent	resistance	of	1.	2
Ω.	However,	choice	D	only	needs	two	2	Ω	resistors,	whereas	choice	A	needs
five	2	Ω	resistors,	making	choice	D	a	more	effective	and	cheaper	solution.

2	.				C	—With	the	switch	open,	the	circuit	is	a	simple	series	circuit	with	an
equivalent	resistance	of	2R.	Both	ammeters	will	receive	the	same	current:

When	the	switch	is	closed,	the	two	resistors	in	parallel	on	the	right	combine
to	give	 	R	.	When	added	in	series	to	the	resistor	in	the	main	line,	this	gives

a	new	equivalent	resistance	for	the	circuit	of	 	R	.	This	will	give	a	new

larger	total	current	passing	through	the	battery	and	ammeter	A1	:



Ammeter	A2	,	however,	only	receives	half	of	this	total	current,	as	the	current
splits	evenly	to	pass	through	each	of	the	parallel	sections	on	the	right	of	the
circuit:

Thus,	the	current	in	A2	decreases	when	the	switch	is	closed.

3	.				B	—When	the	switch	is	initially	closed,	the	uncharged	capacitor	acts	as	a
“wire”	or	“closed	switch”	with	no	resistance.	Thus,	the	initial	circuit	“looks”
like	a	parallel	circuit.	As	the	capacitor	charges,	the	current	through	the
resistor	in	series	with	the	capacitor	drops	to	zero	because	the	capacitor	acts
as	a	“broken	wire”	or	“open	switch”	with	infinite	resistance.	After	a	long
time,	the	circuit	becomes	a	series	circuit	with	current	passing	only	through	a
single	resistor.	As	the	circuit	transitions	from	this	“parallel	to	series,”	the
equivalent	resistance	of	the	circuit	increases.	This	produces	a	current	through
the	ammeter	that	drops	from	its	maximum	starting	value	to	a	steady	state	of
lower	value,	as	shown	in	choice	B.

4	.				B	—The	resistance	external	to	the	battery	is	3	Ω.	The	internal	resistance	of
the	battery	is	1	Ω.	Added	together	in	series,	the	internal	and	external
resistance	is	4	Ω.	This	gives	a	total	current	of	6	A	passing	through	the
battery:

The	voltage	drop	in	the	external	portion	of	the	circuit	will	be	equal	to	the
terminal	voltage:

This	same	result	can	be	achieved	by	finding	the	internal	voltage	drop	inside
the	battery	and	subtracting	it	from	the	emf	of	the	battery:





CHAPTER 	 20

Magnetism

IN	THIS	CHAPTER

Summary:	Magnetic	fields	produce	forces	on	moving	charges;	moving	charges,	such	as	current-carrying
wires,	can	create	magnetic	fields.	This	chapter	discusses	the	production	and	the	effects	of	magnetic	fields.

Key	Ideas
		The	force	on	a	moving	charge	due	to	a	magnetic	field	is	qvB	.
		The	direction	of	the	magnetic	force	on	a	moving	charge	is	given	by	a	right-
hand	rule,	and	is	NOT	in	the	direction	of	the	magnetic	field.
		Current-carrying	wires	produce	magnetic	fields.
		When	the	magnetic	flux	through	a	wire	changes,	a	voltage	is	induced.
		An	inductor	inhibits	the	change	in	the	current	running	through	it.	After	a	long
time,	the	inductor	acts	as	a	bare	wire.

Relevant	Equations
Force	on	a	charged	particle	in	a	magnetic	field:

F	=	qvB

Force	on	a	current-carrying	wire:



F	=	ILB

Magnetic	field	due	to	a	long,	straight,	current-carrying	wire:

Magnetic	flux:

Φ	B	=	BA

Induced	EMF:

Induced	EMF	for	a	rectangular	wire	moving	into	or	out	of	a	magnetic	field:

ε	=	BLv

Time	constant	for	an	LR	circuit:

When	most	people	think	of	magnets,	they	imagine	horseshoe-shaped	objects	that
can	pick	up	bits	of	metal.	Or	maybe	they	visualize	a	refrigerator	door.	But	not	a
physics	ace	like	you!	You	know	that	magnetism	is	a	wildly	diverse	topic,
involving	everything	from	bar	magnets	to	metal	coils	to	mass	spectrometers.
Perhaps	you	also	know	that	magnetism	is	a	subject	filled	with	countless	“right-
hand	rules,”	many	of	which	can	seem	difficult	to	use	or	just	downright
confusing.	So	our	goal	in	this	chapter—besides	reviewing	all	of	the	essential
concepts	and	formulas	that	pertain	to	magnetism—is	to	give	you	a	set	of	easy-to-
understand,	easy-to-use	right-hand	rules	that	are	guaranteed	to	earn	you	points
on	the	AP	exam.

Magnetic	Fields
All	magnets	are	dipoles,	which	means	that	they	have	two	“poles,”	or	ends.	One



is	called	the	north	pole,	and	the	other	is	the	south	pole.	Opposite	poles	attract,
and	like	poles	repel.

You	can	never	create	a	magnet	with	just	a	north	pole	or	just	a	south	pole.	If
you	took	the	magnet	in	Figure	20.1

Figure	20.1			Bar	magnet.

and	cut	it	down	the	middle,	you	would	not	separate	the	poles.	Instead,	you	would
create	two	magnets	like	those	shown	in	Figure	20.2	.

Figure	20.2			Cutting	the	bar	magnet	in	Figure	20.1	in	half	just	gives	you
two	smaller	bar	magnets.	You	can	never	get	an	isolated	north	or	south	pole.

A	magnet	creates	a	magnetic	field.	(See	Figure	20.3	.)	Unlike	electric	field	lines,
which	either	go	from	a	positive	charge	to	a	negative	charge	or	extend	infinitely
into	space,	magnetic	field	lines	form	loops.	These	loops	point	away	from	the
north	end	of	a	magnet,	and	toward	the	south	end.	Near	the	magnet	the	lines	point
nearly	straight	into	or	out	of	the	pole.



Figure	20.3			Magnetic	field	lines	created	by	a	bar	magnet.

Just	as	we	talk	about	the	value	of	an	electric	field	at	a	certain	point,	we	can	also
talk	about	the	value	of	a	magnetic	field	at	a	certain	point.	The	value	of	a
magnetic	field	is	a	vector	quantity,	and	it	is	abbreviated	with	the	letter	B	.	The
value	of	a	magnetic	field	is	measured	in	teslas.

Often,	the	writers	of	the	AP	exam	like	to	get	funky	about	how	they	draw
magnetic	field	lines.	Rather	than	putting	a	magnetic	field	in	the	plane	of	the
page,	so	that	the	field	would	point	up	or	down	or	left	or	right,	the	AP	writers	will
put	magnetic	fields	perpendicular	to	the	page.	This	means	that	the	magnetic	field
either	shoots	out	toward	you	or	shoots	down	into	the	page.

When	a	magnetic	field	line	is	directed	out	of	the	page,	it	is	drawn	as	shown
in	Figure	20.4a	,

Figure	20.4a			Symbol	for	a	magnetic	field	line	directed	out	of	the	page.

and	when	a	magnetic	field	line	is	directed	into	the	page,	it	is	drawn	as	shown	in
Figure	20.4b	.



Figure	20.4b			Symbol	for	a	magnetic	field	line	directed	into	the	page.

Supposedly,	the	drawing	in	Figure	20.4a	is	intended	to	look	like	the	tip	of	an
arrow	coming	out	of	a	page,	and	the	drawing	in	Figure	20.4b	is	intended	to	look
like	the	tail	of	an	arrow	going	into	a	page.	1	These	symbols	can	be	used	to
describe	other	ideas,	such	as	electric	fields	going	into	or	out	of	the	page,	or
currents	flowing	into	or	out	of	the	page,	but	they	are	most	often	used	to	describe
magnetic	fields.

Long,	Straight,	Current-Carrying	Wires
Bar	magnets	aren’t	the	only	things	that	create	magnetic	fields—current-carrying
wires	do	also.	Of	course,	you	can	also	create	a	magnetic	field	using	a	short,
curvy,	current-carrying	wire,	but	the	equations	that	describe	that	situation	are	a
little	more	complicated,	so	we’ll	focus	on	long,	straight,	current-carrying	wires.

The	magnetic	field	created	by	a	long,	straight,	current-carrying	wire	loops
around	the	wire	in	concentric	circles.	The	direction	in	which	the	magnetic	field
lines	loop	is	determined	by	a	right-hand	rule.

(Incidentally,	our	versions	of	the	right-hand	rules	may	not	be	the	same	as
what	you’ve	learned	in	physics	class.	If	you’re	happy	with	the	ones	you	already
know,	you	should	ignore	our	advice	and	just	stick	with	what	works	best	for	you.)

Right-hand	rule:	To	find	the	direction	of	the	B	field	produced	by	long,	straight,
current-carrying	wires.

Pretend	you	are	holding	the	wire	with	your	right	hand.	Point	your	thumb	in
the	direction	of	the	current.	Your	fingers	wrap	around	your	thumb	the	same
way	that	the	magnetic	field	wraps	around	the	wire.

Here’s	an	example.	A	wire	is	directed	perpendicular	to	the	plane	of	this	page
(that	is,	it’s	coming	out	straight	toward	you).	The	current	in	this	wire	is	flowing
out	of	the	page.	What	does	the	magnetic	field	look	like?

To	solve	this,	we	first	pretend	that	we	are	grabbing	the	wire.	If	it	helps,	take



your	pencil	and	place	it	on	this	page,	with	the	eraser	touching	the	page	and	the
point	of	the	pencil	coming	out	toward	you.	This	pencil	is	like	the	wire.	Now	grab
the	pencil	with	your	right	hand.	The	current	is	coming	out	of	the	page,	so	make
sure	that	you	have	grabbed	the	pencil	in	such	a	way	that	your	thumb	is	pointing
away	from	the	page.	If	it	looks	like	you’re	giving	someone	a	“thumbs-up	sign,”
then	you’re	doing	this	correctly.	Finally,	look	at	how	your	fingers	are	wrapped
around	the	pencil.	From	a	bird’s-eye	view,	it	should	look	like	your	fingers	are
wrapping	counterclockwise.	So	this	tells	us	the	answer	to	the	problem,	as	shown
in	Figure	20.5	.

Figure	20.5			Magnetic	field	(dotted	lines)	generated	by	a	long,	straight,
current-carrying	wire	oriented	perpendicular	to	the	plane	of	the	page.

Here’s	another	example.	What	does	the	magnetic	field	look	like	around	a	wire	in
the	plane	of	the	page	with	current	directed	upward?

We	won’t	walk	you	through	this	one;	just	use	the	right-hand	rule,	and	you’ll
be	fine.	The	answer	is	shown	in	Figure	20.6	.

Figure	20.6			Magnetic	field	around	a	wire	in	the	plane	of	the	page	with
current	directed	upward.

The	formula	that	describes	the	magnitude	of	the	magnetic	field	created	by	a



long,	straight,	current-carrying	wire	is	the	following:

In	this	formula,	B	is	the	magnitude	of	the	magnetic	field,	μ0	is	a	constant	called
the	“permeability	of	free	space”	(μ0	=	4π	×	10−7	T·m/A),	I	is	the	current	flowing
in	the	wire,	and	r	is	the	distance	from	the	wire.

Moving	Charged	Particles
The	whole	point	of	defining	a	magnetic	field	is	to	determine	the	forces	produced
on	an	object	by	the	field.	You	are	familiar	with	the	forces	produced	by	bar
magnets—like	poles	repel,	opposite	poles	attract.	We	don’t	have	any	formulas
for	the	amount	of	force	produced	in	this	case,	but	that’s	okay,	because	this	kind
of	force	is	irrelevant	to	the	AP	exam.

Instead,	we	must	focus	on	the	forces	produced	by	magnetic	fields	on	charged
particles,	including	both	isolated	charges	and	current-carrying	wires.	(After	all,
current	is	just	the	movement	of	positive	charges.)

A	magnetic	field	exerts	a	force	on	a	charged	particle	if	that	particle	is	moving
perpendicular	to	the	magnetic	field.	A	magnetic	field	does	not	exert	a	force	on	a
stationary	charged	particle,	nor	on	a	particle	that	is	moving	parallel	to	the
magnetic	field.

The	magnitude	of	the	force	exerted	on	the	particle	equals	the	charge	on	the
particle,	q	,	multiplied	by	the	velocity	of	the	particle,	v	,	multiplied	by	the
magnitude	of	the	magnetic	field.

This	equation	is	sometimes	written	as	F	=	qvB	(sin	θ	).	The	θ	refers	to	the
angle	formed	between	the	velocity	vector	of	your	particle	and	the	direction	of
the	magnetic	field.	So,	if	a	particle	moves	in	the	same	direction	as	the	magnetic
field	lines,	θ	=	0°,	sin	0°	=	0,	and	that	particle	experiences	no	magnetic	force!

Nine	times	out	of	ten,	you	will	not	need	to	worry	about	this	“sin	θ	”	term,
because	the	angle	will	either	be	zero	or	90°.	However,	if	a	problem	explicitly
tells	you	that	your	particle	is	not	traveling	perpendicular	to	the	magnetic	field,



then	you	will	need	to	throw	in	this	extra	“sin	θ	”	term.

Right-hand	rule:	To	find	the	force	on	a	charged	particle.
Point	your	right	hand,	with	fingers	extended,	in	the	direction	that	the

charged	particle	is	traveling.	Then,	bend	your	fingers	so	that	they	point	in	the
direction	of	the	magnetic	field.

•			If	the	particle	has	a	POSITIVE	charge,	your	thumb	points	in	the	direction	of
the	force	exerted	on	it.

•			If	the	particle	has	a	NEGATIVE	charge,	your	thumb	points	opposite	the
direction	of	the	force	exerted	on	it.

The	key	to	this	right-hand	rule	is	to	remember	the	sign	of	your	particle.	This	next
problem	illustrates	how	important	sign	can	be.

An	electron	travels	through	a	magnetic	field,	as	shown	below.	The	particle’s
initial	velocity	is	5	×	106	m/s,	and	the	magnitude	of	the	magnetic	field	is	0.4	T.
What	are	the	magnitude	and	direction	of	the	particle’s	acceleration?

This	is	one	of	those	problems	where	you’re	told	that	the	particle	is	not	moving
perpendicular	to	the	magnetic	field.	So	the	formula	we	use	to	find	the	magnitude
of	the	force	acting	on	the	particle	is

F	=	qvB	(sin	θ	)
F	=	(1.6	×	10−19	C)(5	×	106	m/s)(0.4	T)(sin	30°)
F	=	1.6	×	10−13	N.

Note	that	we	never	plug	in	the	negative	signs	when	calculating	force.	The



negative	charge	on	an	electron	will	influence	the	direction	of	the	force,	which	we
will	determine	in	a	moment.	Now	we	solve	for	acceleration:

Wow,	you	say	…	a	bigger	acceleration	than	anything	we’ve	ever	dealt	with.	Is
this	unreasonable?	After	all,	in	less	than	a	second	the	particle	would	be	moving
faster	than	the	speed	of	light,	right?	The	answer	is	still	reasonable.	In	this	case,
the	acceleration	is	perpendicular	to	the	velocity.	This	means	the	acceleration	is
centripetal	,	and	the	particle	must	move	in	a	circle	at	constant	speed.	But	even	if
the	particle	were	speeding	up	at	this	rate,	either	the	acceleration	wouldn’t	act	for
very	long,	or	relativistic	effects	would	prevent	the	particle	from	traveling	faster
than	light.

Finally,	we	solve	for	direction	using	the	right-hand	rule.	We	point	our	hand
in	the	direction	that	the	particle	is	traveling—to	the	right.	Next,	we	curl	our
fingers	upward,	so	that	they	point	in	the	same	direction	as	the	magnetic	field.
Our	thumb	points	out	of	the	page.	BUT	WAIT!!!	We’re	dealing	with	an	electron,
which	has	a	negative	charge.	So	the	force	acting	on	our	particle,	and	therefore
the	particle’s	acceleration,	points	in	the	opposite	direction.	The	particle	is
accelerating	into	the	page.

Magnetic	Force	on	a	Wire
A	current	is	simply	the	flow	of	positive	charges.	So,	if	we	put	a	current-carrying
wire	perpendicular	to	a	magnetic	field,	we	have	placed	moving	charges
perpendicular	to	the	field,	and	these	charges	experience	a	force.	The	wire	can	be
pulled	by	the	magnetic	field!

The	formula	for	the	force	on	a	long,	straight,	current-carrying	wire	in	the
presence	of	a	magnetic	field	is

This	equation	says	that	the	force	on	a	wire	equals	the	current	in	the	wire,	I	,
multiplied	by	the	length	of	the	wire,	L	,	multiplied	by	the	magnitude	of	the
magnetic	field,	B	,	in	which	the	wire	is	located.

Sometimes	you’ll	see	this	equation	written	as	F	=	ILB	(sin	θ	).	Just	like	the
equation	for	the	force	on	a	charge,	the	θ	refers	to	the	angle	between	the	wire	and
the	magnetic	field.	You	normally	don’t	have	to	worry	about	this	θ	because,	in



most	problems,	the	wire	is	perpendicular	to	the	magnetic	field,	and	sin	90°	=	1,
so	the	term	cancels	out.

The	direction	of	the	force	on	a	current-carrying	wire	is	given	by	the	same
right-hand	rule	as	for	the	force	on	a	charged	particle	because	current	is	simply
the	flow	of	positive	charge.

What	would	happen	if	you	had	two	long,	straight,	current-carrying	wires	side
by	side?	This	is	a	question	that	the	writers	of	the	AP	exam	love	to	ask,	so	it	is	a
great	idea	to	learn	how	to	answer	it.

The	trick	that	makes	answering	this	question	very	easy	is	that	you	have	to
draw	the	direction	of	the	magnetic	field	that	one	of	the	wires	creates;	then
consider	the	force	on	the	other	wire.	So,	for	example	…

Two	wires	are	placed	parallel	to	each	other.	The	direction	of	current	in	each
wire	is	indicated	above.	How	will	these	wires	interact?

(A)	They	will	attract	each	other.
(B)	They	will	repel	each	other.
(C)	They	will	not	affect	each	other.
(D)	This	question	cannot	be	answered	without	knowing	the	length	of	each

wire.
(E)	This	question	cannot	be	answered	without	knowing	the	current	in	each

wire.

Let’s	follow	our	advice	and	draw	the	magnetic	field	created	by	the	left-hand
wire.

Now,	a	wire’s	field	cannot	produce	a	force	on	itself.	The	field	that	we	drew	is
caused	by	the	left	wire,	but	produces	a	force	on	the	right-hand	wire.	Which



direction	is	that	force?	Use	the	right-hand	rule	for	the	force	on	a	charged	particle.
The	charges	are	moving	up,	in	the	direction	of	the	current.	So	point	up	the	page,
and	curl	your	fingers	toward	the	magnetic	field,	into	the	page.	The	right	wire	is
forced	to	the	LEFT.	Newton’s	third	law	says	that	the	force	on	the	left	wire	by	the
right	wire	will	be	equal	and	opposite.	2	So,	the	wires	attract,	answer	A.

Often,	textbooks	give	you	advice	such	as,	“Whenever	the	current	in	two
parallel	wires	is	traveling	in	the	same	direction,	the	wires	will	attract	each	other,
and	vice	versa.”	Use	it	if	you	like,	but	this	advice	can	easily	be	confused.

Mass	Spectrometry:	More	Charges	Moving	Through
Magnetic	Fields
A	magnetic	field	can	make	a	charged	particle	travel	in	a	circle.	Here’s	how	it
performs	this	trick.

Figure	20.7a			Positively	charged	particle	moving	in	a	magnetic	field
directed	out	of	the	page.

Let’s	say	you	have	a	proton	traveling	through	a	uniform	magnetic	field	coming
out	of	the	page,	and	the	proton	is	moving	to	the	right,	like	the	one	we	drew	in
Figure	20.7a	.	The	magnetic	field	exerts	a	downward	force	on	the	particle	(use
the	right-hand	rule).	So	the	path	of	the	particle	begins	to	bend	downward,	as
shown	in	Figure	20.7b	.



Figure	20.7b			Curving	path	of	a	positively	charged	particle	moving	in	a
magnetic	field	directed	out	of	the	page.

Now	our	proton	is	moving	straight	down.	The	force	exerted	on	it	by	the
magnetic	field,	using	the	right-hand	rule,	is	now	directed	to	the	left.	So	the
proton	will	begin	to	bend	leftward.	You	probably	see	where	this	is	going—a
charged	particle,	traveling	perpendicular	to	a	uniform	magnetic	field,	will	follow
a	circular	path.

We	can	figure	out	the	radius	of	this	path	with	some	basic	math.	The	force	of
the	magnetic	field	is	causing	the	particle	to	go	in	a	circle,	so	this	force	must
cause	centripetal	acceleration.	That	is,	qvB	=	mv	2	/r	.

We	didn’t	include	the	“sin	θ	”	term	because	the	particle	is	always	traveling
perpendicular	to	the	magnetic	field.	We	can	now	solve	for	the	radius	of	the
particle’s	path:

The	real-world	application	of	this	particle-in-a-circle	trick	is	called	a	mass
spectrometer.	A	mass	spectrometer	is	a	device	used	to	determine	the	mass	of	a
particle.

A	mass	spectrometer,	in	simplified	form,	is	drawn	in	Figure	20.8	.



Figure	20.8			Basic	mass	spectrometer.

A	charged	particle	enters	a	uniform	electric	field	(shown	at	the	left	in	Figure	20.8
).	It	is	accelerated	by	the	electric	field.	By	the	time	it	gets	to	the	end	of	the
electric	field,	it	has	acquired	a	high	velocity,	which	can	be	calculated	using
conservation	of	energy.	Then	the	particle	travels	through	a	tiny	opening	and
enters	a	uniform	magnetic	field.	This	magnetic	field	exerts	a	force	on	the
particle,	and	the	particle	begins	to	travel	in	a	circle.	It	eventually	hits	the	wall
that	divides	the	electric-field	region	from	the	magnetic-field	region.	By
measuring	where	on	the	wall	it	hits,	you	can	determine	the	radius	of	the
particle’s	path.	Plugging	this	value	into	the	equation	we	derived	for	the	radius	of
the	path,	you	can	calculate	the	particle’s	mass	r	=	mv/qB	.

You	may	see	a	problem	on	the	free-response	section	that	involves	a	mass
spectrometer.	These	problems	may	seem	intimidating,	but,	when	you	take	them
one	step	at	a	time,	they’re	not	very	difficult.

Induced	EMF
A	changing	magnetic	field	produces	a	current.	We	call	this	occurrence
electromagnetic	induction	.

So	let’s	say	that	you	have	a	loop	of	wire	in	a	magnetic	field.	Under	normal
conditions,	no	current	flows	in	your	wire	loop.	However,	if	you	change	the
magnitude	of	the	magnetic	field,	a	current	will	begin	to	flow.

We’ve	said	in	the	past	that	current	flows	in	a	circuit	(and	a	wire	loop



qualifies	as	a	circuit,	albeit	a	simple	one)	when	there	is	a	potential	difference
between	the	two	ends	of	the	circuit.	Usually,	we	need	a	battery	to	create	this
potential	difference.	But	we	don’t	have	a	battery	hooked	up	to	our	loop	of	wire.
Instead,	the	changing	magnetic	field	is	doing	the	same	thing	as	a	battery	would.
So	rather	than	talking	about	the	voltage	of	the	battery	in	this	circuit,	we	talk
about	the	“voltage”	created	by	the	changing	magnetic	field.	The	technical	term
for	this	“voltage”	is	induced	EMF	.

Induced	EMF	:	The	potential	difference	created	by	a	changing	magnetic	field
that	causes	a	current	to	flow	in	a	wire.	EMF	stands	for	Electro-Motive	Force,
but	is	NOT	a	force.

For	a	loop	of	wire	to	“feel”	the	changing	magnetic	field,	some	of	the	field	lines
need	to	pass	through	it.	The	amount	of	magnetic	field	that	passes	through	the
loop	is	called	the	magnetic	flux	.	This	concept	is	pretty	similar	to	electric	flux.

Magnetic	Flux	:	The	number	of	magnetic	field	lines	that	pass	through	an	area

The	units	of	flux	are	called	webers;	1	weber	=	1	T·m2	.	The	equation	for
magnetic	flux	is

In	this	equation,	Φ	B	is	the	magnetic	flux,	B	is	the	magnitude	of	the	magnetic
field,	and	A	is	the	area	of	the	region	that	is	penetrated	by	the	magnetic	field.

Let’s	take	a	circular	loop	of	wire,	lay	it	down	on	the	page,	and	create	a
magnetic	field	that	points	to	the	right,	as	shown	in	Figure	20.9	.



Figure	20.9			Loop	of	wire	in	the	plane	of	a	magnetic	field.

No	field	lines	go	through	the	loop.	Rather,	they	all	hit	the	edge	of	the	loop,	but
none	of	them	actually	passes	through	the	center	of	the	loop.	So	we	know	that	our
flux	should	equal	zero.

Okay,	this	time	we	will	orient	the	field	lines	so	that	they	pass	through	the
middle	of	the	loop.	We’ll	also	specify	the	loop’s	radius	=	0.2	m,	and	that	the
magnetic	field	is	that	of	the	Earth,	B	=	5	×	10−5	T.	This	situation	is	shown	in
Figure	20.10	.

Figure	20.10			Loop	of	wire	with	magnetic	field	lines	going	through	it.

Now	all	of	the	area	of	the	loop	is	penetrated	by	the	magnetic	field,	so	A	in	the
flux	formula	is	just	the	area	of	the	circle,	πr	2	.

The	flux	here	is

Φ	B	=	(5	×	10−5	)(π)	(0.22	)	=	6.2	×	10−6	T·m2	.

Sometimes	you’ll	see	the	flux	equation	written	as	BA	cosθ	.	The	additional
cosine	term	is	only	relevant	when	a	magnetic	field	penetrates	a	wire	loop	at
some	angle	that’s	not	90°.	The	angle	θ	is	measured	between	the	magnetic	field
and	the	“normal”	to	the	loop	of	wire	…	if	you	didn’t	get	that	last	statement,
don’t	worry	about	it.	Rather,	know	that	the	cosine	term	goes	to	1	when	the
magnetic	field	penetrates	directly	into	the	loop,	and	the	cosine	term	goes	to	zero
when	the	magnetic	field	can’t	penetrate	the	loop	at	all.

Because	a	loop	will	only	“feel”	a	changing	magnetic	field	if	some	of	the	field
lines	pass	through	the	loop,	we	can	more	accurately	say	the	following:	A
changing	magnetic	flux	creates	an	induced	EMF	.



Faraday’s	law	tells	us	exactly	how	much	EMF	is	induced	by	a	changing
magnetic	flux.

ε	is	the	induced	EMF,	N	is	the	number	of	loops	you	have	(in	all	of	our	examples,
we’ve	only	had	one	loop),	and	Δt	is	the	time	during	which	your	magnetic	flux,	Φ
B	,	is	changing.

Up	until	now,	we’ve	just	said	that	a	changing	magnetic	flux	creates	a	current.
We	haven’t	yet	told	you,	though,	in	which	direction	that	current	flows.	To	do
this,	we’ll	turn	to	Lenz’s	Law	.

Lenz’s	Law:	States	that	the	direction	of	the	induced	current	opposes	the
increase	in	flux

When	a	current	flows	through	a	loop,	that	current	creates	a	magnetic	field.	So
what	Lenz	said	is	that	the	current	that	is	induced	will	flow	in	such	a	way	that	the
magnetic	field	it	creates	points	opposite	to	the	direction	in	which	the	already
existing	magnetic	flux	is	changing.

Sound	confusing?	4	It’ll	help	if	we	draw	some	good	illustrations.	So	here	is
Lenz’s	Law	in	pictures.

We’ll	start	with	a	loop	of	wire	that	is	next	to	a	region	containing	a	magnetic
field	(Figure	20.11a	).	Initially,	the	magnetic	flux	through	the	loop	is	zero.

Figure	20.11a			Loop	of	wire	next	to	a	region	containing	a	magnetic	field
pointing	out	of	the	page.



Now,	we	will	move	the	wire	into	the	magnetic	field.	When	we	move	the	loop
toward	the	right,	the	magnetic	flux	will	increase	as	more	and	more	field	lines
begin	to	pass	through	the	loop.	The	magnetic	flux	is	increasing	out	of	the	page—
at	first,	there	was	no	flux	out	of	the	page,	but	now	there	is	some	flux	out	of	the
page.	Lenz’s	Law	says	that	the	induced	current	will	create	a	magnetic	field	that
opposes	this	increase	in	flux.	So	the	induced	current	will	create	a	magnetic	field
into	the	page.	By	the	right-hand	rule,	the	current	will	flow	clockwise.	This
situation	is	shown	in	Figure	20.11b	.

Figure	20.11b			Current	induced	in	loop	of	wire	as	it	moves	into	a	magnetic
field	directed	out	of	the	page.

After	a	while,	the	loop	will	be	entirely	in	the	region	containing	the	magnetic
field.	Once	it	enters	this	region,	there	will	no	longer	be	a	changing	flux,	because
no	matter	where	it	is	within	the	region,	the	same	number	of	field	lines	will
always	be	passing	through	the	loop.	Without	a	changing	flux,	there	will	be	no
induced	EMF,	so	the	current	will	stop.	This	is	shown	in	Figure	20.11c	.

Figure	20.11c			Loop	of	wire	with	no	current	flowing,	because	it	is	not
experiencing	a	changing	magnetic	flux.



To	solve	a	problem	that	involves	Lenz’s	Law,	use	this	method:

•			Point	your	right	thumb	in	the	initial	direction	of	the	magnetic	field.
•			Ask	yourself,	“Is	the	flux	increasing	or	decreasing?”
•			If	the	flux	is	decreasing,	then	just	curl	your	fingers	(with	your	thumb	still
pointed	in	the	direction	of	the	magnetic	field).	Your	fingers	show	the	direction
of	the	induced	current.

•			If	flux	is	increasing	in	the	direction	you’re	pointing,	then	flux	is	decreasing	in
the	other	direction.	So,	point	your	thumb	in	the	opposite	direction	of	the
magnetic	field,	and	curl	your	fingers.	Your	fingers	show	the	direction	of	the
induced	current.

Induced	EMF	in	a	Rectangular	Wire
Consider	the	example	in	Figures	20.11a	–c	with	the	circular	wire	being	pulled
through	the	uniform	magnetic	field.	It	can	be	shown	that	if	instead	we	pull	a
rectangular	wire	into	or	out	of	a	uniform	field	B	at	constant	speed	v	,	then	the
induced	EMF	in	the	wire	is	found	by

Here,	L	represents	the	length	of	the	side	of	the	rectangle	that	is	NOT	entering	or
exiting	the	field,	as	shown	below	in	Figure	20.12	.

Figure	20.12			Rectangular	wire	moving	through	a	uniform	magnetic	field.

Some	Words	of	Caution
We	say	this	from	personal	experience.	First,	when	using	a	right-hand	rule,	use
big,	easy-to-see	gestures.	A	right-hand	rule	is	like	a	form	of	advertisement:	it	is	a
way	that	your	hand	tells	your	brain	what	the	answer	to	a	problem	is.	You	want
that	advertisement	to	be	like	a	billboard—big,	legible,	and	impossible	to



misread.	Tiny	gestures	will	only	lead	to	mistakes.	Second,	when	using	a	right-
hand	rule,	always	use	your	right	hand.	Never	use	your	left	hand!	This	will	cost
you	points!

Exam	tip	from	an	AP	Physics	veteran:
Especially	if	you	hold	your	pencil	in	your	right	hand,	it’s	easy	accidentally	to
use	your	left	hand.	Be	careful!

—Jessica,	college	sophomore

The	Biot-Savart	Law	and	Ampére’s	Law
So	far	we’ve	only	discussed	two	possible	ways	to	create	a	magnetic	field—use	a
bar	magnet,	or	a	long,	straight,	current-carrying	wire.	And	of	these,	we	only	have
an	equation	to	find	the	magnitude	of	the	field	produced	by	the	wire.

Biot-Savart	Law
The	Biot-Savart	law	provides	a	way,	albeit	a	complicated	way,	to	find	the
magnetic	field	produced	by	pretty	much	any	type	of	current.	It’s	not	worth
worrying	about	using	the	law	because	it’s	got	a	horrendously	complicated
integral	with	a	cross	product	included.	Just	know	the	conceptual	consequence:	a
little	element	of	wire	carrying	a	current	produces	a	magnetic	field	that	(a)	wraps
around	the	current	element	via	the	right-hand	rule,	and	(b)	decreases	in
magnitude	as	1/r	2	,	r	being	the	distance	from	the	current	element.

So	why	does	the	magnetic	field	caused	by	a	long,	straight,	current-carrying
wire	drop	off	as	1/r	rather	than	1/r	2	?	Because	the	1/r	2	drop-off	is	for	the
magnetic	field	produced	just	by	a	teeny	little	bit	of	current-carrying	wire	(in
calculus	terminology,	by	a	differential	element	of	current).	When	we	include	the
contributions	of	every	teeny	bit	of	a	very	long	wire,	the	net	field	drops	off	as	1/r
.



Ampére’s	Law
Ampére’s	law	gives	an	alternative	method	for	finding	the	magnetic	field	caused
by	a	current.	Although	Ampére’s	law	is	valid	everywhere	that	current	is
continuous,	it	is	only	useful	in	a	few	specialized	situations	where	symmetry	is
high.	There	are	three	important	results	of	Ampére’s	law:

1.				The	magnetic	field	produced	by	a	very	long,	straight	current	is

outside	the	wire;	inside	the	wire,	the	field	increases	linearly	from	zero	at
the	wire’s	center.

2.				A	solenoid	is	set	of	wound	wire	loops.	A	current-carrying	solenoid
produces	a	magnetic	field.	Ampére’s	law	can	show	that	the	magnetic	field
due	to	a	solenoid	is	shaped	like	that	of	a	bar	magnet;	and	the	magnitude	of
the	magnetic	field	inside	the	solenoid	is	approximately	uniform,	Bsolenoid	=
μ0	nI	.	(Here	I	is	the	current	in	the	solenoid,	and	n	is	the	number	of	coils	per
meter	in	the	solenoid.)

3.				The	magnetic	field	produced	by	a	wire-wrapped	torus	(a	“donut”	with	wire
wrapped	around	it	[see	Figure	20.13	])	is	zero	everywhere	outside	the	torus,
but	nonzero	within	the	torus.	The	direction	of	the	field	inside	the	torus	is
around	the	donut.



Figure	20.13			A	wire-wrapped	torus.

Maxwell’s	Equations
Okay,	we’ll	get	this	out	of	the	way	right	now:	You	will	not	have	to	solve
Maxwell’s	equations	on	the	AP	Physics	exam	.	These	four	equations	include
integrals	the	likes	of	which	you	will	not	be	able	to	solve	until	well	into	college
physics,	if	then.	However,	you	can	understand	the	basic	point	of	each	equation,
and,	most	importantly,	understand	the	equations’	greatest	consequence.

Accelerating	charges	produce	oscillations	of	electric	and	magnetic	fields.
These	oscillations	propagate	as	waves,	with	speed

Maxwell	obtained	this	wave	speed	as	a	mathematical	result	from	the	equations.
He	noticed	that,	when	the	experimentally	determined	constants	were	plugged	in,
the	speed	of	his	“electromagnetic	waves”	was	identical	to	the	speed	of	light.	5
Maxwell’s	conclusion	was	that	light	must	be	an	electromagnetic	wave.

What	are	Maxwell’s	equations?	We’re	not	even	going	to	write	them	out,	for
fear	that	you	might	throw	down	your	book	in	trepidation.	If	you’re	really
interested	in	the	integral	or	differential	form	of	the	equations,	you	will	find	them
in	your	physics	book	(or	on	a	rather	popular	T-shirt).	While	we	won’t	write	the



equations,	we’ll	gladly	summarize	what	they	are	and	what	they	mean.

•			Maxwell	equation	1	is	simply	Gauss’s	law:	the	net	electric	flux	through	a
closed	surface	is	proportional	to	the	charge	enclosed	by	that	surface.

•			Maxwell	equation	2	is	sometimes	called	Gauss’s	law	for	magnetism:	the	net
magnetic	flux	through	a	closed	surface	must	always	be	zero.	The	consequence
of	this	equation	is	that	magnetic	poles	come	in	north/south	pairs—you	cannot
have	an	isolated	north	magnetic	pole.

•			Maxwell	equation	3	is	simply	Faraday’s	law:	a	changing	magnetic	flux
through	a	loop	of	wire	induces	an	EMF.

•			Maxwell	equation	4	is	partly	Ampére’s	law,	but	with	an	addition	called
“displacement	current”	that	allows	the	equation	to	be	valid	in	all	situations.
The	principal	consequence	is	that	just	as	a	changing	magnetic	field	can
produce	an	electric	field,	a	changing	electric	field	can	likewise	produce	a
magnetic	field.

	Practice	Problems

Multiple	Choice:

1	.				A	point	charge	of	+1	μC	moves	with	velocity	v	into	a	uniform	magnetic
field	B	directed	to	the	right,	as	shown	above.	What	is	the	direction	of	the
magnetic	force	on	the	charge?
(A)	to	the	right	and	up	the	page
(B)	directly	out	of	the	page
(C)	directly	into	the	page
(D)	to	the	right	and	into	the	page
(E)	to	the	right	and	out	of	the	page



2	.				A	uniform	magnetic	field	B	points	up	the	page,	as	shown	above.	A	loop	of
wire	carrying	a	clockwise	current	is	placed	at	rest	in	this	field	as	shown
above,	and	then	let	go.	Which	of	the	following	describes	the	motion	of	the
wire	immediately	after	it	is	let	go?
(A)	The	wire	will	expand	slightly	in	all	directions.
(B)	The	wire	will	contract	slightly	in	all	directions.
(C)	The	wire	will	rotate,	with	the	top	part	coming	out	of	the	page.
(D)	The	wire	will	rotate,	with	the	left	part	coming	out	of	the	page.
(E)	The	wire	will	rotate	clockwise,	remaining	in	the	plane	of	the	page.

3	.				An	electron	moves	to	the	right	in	a	uniform	magnetic	field	that	points	into
the	page.	What	is	the	direction	of	the	electric	field	that	could	be	used	to
cause	the	electron	to	travel	in	a	straight	line?
(A)	down	toward	the	bottom	of	the	page
(B)	up	toward	the	top	of	the	page
(C)	into	the	page
(D)	out	of	the	page
(E)	to	the	left

Free	Response:



4	.				A	circular	loop	of	wire	of	negligible	resistance	and	radius	R	=	20	cm	is
attached	to	the	circuit	shown	above.	Each	resistor	has	resistance	10	Ω.	The
magnetic	field	of	the	Earth	points	up	along	the	plane	of	the	page	in	the
direction	shown,	and	has	magnitude	B	=	5.0	×	10−5	T.

The	wire	loop	rotates	about	a	horizontal	diameter,	such	that	after	a
quarter	rotation	the	loop	is	no	longer	in	the	page,	but	perpendicular	to	it.	The
loop	makes	500	revolutions	per	second,	and	remains	connected	to	the	circuit
the	entire	time.
(a)	Determine	the	magnetic	flux	through	the	loop	when	the	loop	is	in	the

orientation	shown.
(b)	Determine	the	maximum	magnetic	flux	through	the	loop.
(c)	Estimate	the	average	value	of	the	induced	EMF	in	the	loop.
(d)	Estimate	the	average	current	through	resistor	C	.

5	.				A	loop	of	wire	is	located	inside	a	uniform	magnetic	field,	as	shown	above.
Name	at	least	four	things	you	could	do	to	induce	a	current	in	the	loop.

	Solutions	to	Practice	Problems

1	.				C	—Use	the	right-hand	rule	for	the	force	on	charged	particles.	You	point	in



the	direction	of	the	velocity,	and	curl	your	fingers	in	the	direction	of	the
magnetic	field.	This	should	get	your	thumb	pointing	into	the	page.	Because
this	is	a	positive	charge,	no	need	to	switch	the	direction	of	the	force.

2	.				C	—Use	the	right-hand	rule	for	the	force	on	a	wire.	Look	at	each	part	of
this	wire.	At	the	leftmost	and	rightmost	points,	the	current	is	along	the
magnetic	field	lines.	Thus,	these	parts	of	the	wire	experience	no	force.	The
topmost	part	of	the	wire	experiences	a	force	out	of	the	page	(point	to	the
right,	fingers	curl	up	the	page,	the	thumb	points	out	of	the	page).	The
bottommost	part	of	the	wire	experiences	a	force	into	the	page.	So,	the	wire
will	rotate.

3	.				A	—Use	the	right-hand	rule	for	the	force	on	a	charge.	Point	in	the	direction
of	velocity,	curl	the	fingers	into	the	page,	the	thumb	points	up	the	page	…
but	this	is	a	negative	charge,	so	the	force	on	the	charge	is	down	the	page.
Now,	the	electric	force	must	cancel	the	magnetic	force	for	the	charge	to
move	in	a	straight	line,	so	the	electric	force	should	be	up	the	page.	(E	and	B
fields	cannot	cancel,	but	forces	sure	can.)	The	direction	of	an	electric	force
on	a	negative	charge	is	opposite	the	field;	so	the	field	should	point	down,
toward	the	bottom	of	the	page.

4	.				(a)	Flux	equals	zero	because	the	field	points	along	the	loop,	not	ever	going
straight	through	the	loop.

(b)	Flux	is	maximum	when	the	field	is	pointing	straight	through	the	loop;
that	is,	when	the	loop	is	perpendicular	to	the	page.	Then	flux	will	be	just
BA	=	5.0	×	10−5	T·π(0.20	m)2	=	6.3	×	10−6	T·m2	.	(Be	sure	your	units	are
right!)

(c)	Induced	EMF	for	this	one	loop	is	change	in	flux	over	time	interval.	It
takes	1/500	of	a	second	for	the	loop	to	make	one	complete	rotation;	so	it
takes	1	/4	of	that,	or	1/2000	of	a	second,	for	the	loop	to	go	from	zero	to
maximum	flux.	Divide	this	change	in	flux	by	1/2000	of	a	second	…	this
is	6.3	×	10−6	T·m2	/0.0005	s	=	0.013	V.	(That’s	13	mV.)

(d)	Now	we	can	treat	the	circuit	as	if	it	were	attached	to	a	battery	of	voltage
13	mV.	The	equivalent	resistance	of	the	parallel	combination	of	resistors
B	and	C	is	5	Ω;	the	total	resistance	of	the	circuit	is	15	Ω.	So	the	current	in
the	whole	circuit	is	0.013	V/15	W	=	8.4	×	10−4	A.	(This	can	also	be
stated	as	840	μA.)	The	current	splits	evenly	between	resistors	B	and	C
since	they’re	equal	resistances,	so	we	get	420	μA	for	resistor	C	.



5	.				The	question	might	as	well	be	restated,	“Name	four	things	you	could	do	to
change	the	flux	through	the	loop,”	because	only	a	changing	magnetic	flux
induces	an	EMF.
(a)	Rotate	the	wire	about	an	axis	in	the	plane	of	the	page.	This	will	change

the	θ	term	in	the	expression	for	magnetic	flux,	BA	cos	θ	.
(b)	Pull	the	wire	out	of	the	field.	This	will	change	the	area	term,	because	the

magnetic	field	lines	will	intersect	a	smaller	area	of	the	loop.
(c)	Shrink	or	expand	the	loop.	This	also	changes	the	area	term	in	the

equation	for	magnetic	flux.
(d)	Increase	or	decrease	the	strength	of	the	magnetic	field.	This	changes	the

B	term	in	the	flux	equation.

	Rapid	Review
•			Magnetic	fields	can	be	drawn	as	loops	going	from	the	north	pole	of	a	magnet
to	the	south	pole.

•			A	long,	straight,	current-carrying	wire	creates	a	magnetic	field	that	wraps
around	the	wire	in	concentric	circles.	The	direction	of	the	magnetic	field	is
found	by	a	right-hand	rule.

•			Similarly,	loops	of	wire	that	carry	current	create	magnetic	fields.	The
direction	of	the	magnetic	field	is,	again,	found	by	a	right-hand	rule.

•			A	magnetic	field	exerts	a	force	on	a	charged	particle	if	that	particle	is	moving
perpendicular	to	the	magnetic	field.

•			When	a	charged	particle	moves	perpendicular	to	a	magnetic	field,	it	ends	up
going	in	circles.	This	phenomenon	is	the	basis	behind	mass	spectrometry.

•			A	changing	magnetic	flux	creates	an	induced	EMF,	which	causes	current	to
flow	in	a	wire.

•			Lenz’s	Law	says	that	when	a	changing	magnetic	flux	induces	a	current,	the
direction	of	that	current	will	be	such	that	the	magnetic	field	it	induces	is
pointed	in	the	opposite	direction	of	the	original	change	in	magnetic	flux.

•			The	Biot–Savart	law	has	as	its	consequence	that	a	little	element	of	wire
carrying	a	current	produces	a	magnetic	field	that	(1)	wraps	around	the	current
element	via	the	right-hand	rule,	and	(2)	decreases	in	magnitude	as	1/r	2	,	r
being	the	distance	from	the	current	element.	This	is	applicable	to	Physics	C



only.

•			Ampére’s	law	has	as	its	consequence	that	(1)	the	magnetic	field	produced	by	a
very	long,	straight	current	is

outside	the	wire;	inside	the	wire,	the	field	increases	linearly	from	zero	at	the
wire’s	center,	and	(2)	the	magnetic	field	produced	by	a	wire-wrapped	torus	is
zero	everywhere	outside	the	torus,	but	nonzero	within	the	torus.	The	direction
of	the	field	inside	the	torus	is	around	the	donut.



1	If	you’re	not	too	impressed	by	these	representations,	just	remember	how	physicists	like	to	draw
refrigerators.	There’s	a	reason	why	these	science	folks	weren’t	accepted	into	art	school.

2	You	could	also	figure	out	the	force	on	the	left	wire	by	using	the	same	method	we	just	used	for	the	force
on	the	right	wire:	draw	the	magnetic	field	produced	by	the	right	wire,	and	use	the	right-hand	rule	to	find	the
direction	of	the	magnetic	force	acting	on	the	left	wire.

3	But	the	calculus	version	of	the	induced	EMF	formula	states:	 	.	If	you’re	given	magnetic

flux	as	a	function	of	time,	then	take	the	negative	time	derivative	to	find	the	induced	EMF.
4	“Yes.”
5	Which	had	first	been	accurately	measured	in	the	late	1600s	using	observations	of	the	moons	of	Jupiter.



CHAPTER 	 20

Magnetism

1	.				Two	long	wires	carry	current	perpendicular	to	the	page	in	opposite
directions	as	shown.	The	left	wire	has	twice	the	current	of	the	right	wire.	At
which	location	will	the	magnetic	field	be	closest	to	zero?
(A)			A
(B)			B
(C)			C
(D)			D
(E)			E

2	.				A	proton	with	a	velocity	(v)	is	moving	directly	away	from	a	wire	carrying	a



current	(I)	directed	to	the	right	in	the	+x	direction,	as	shown	in	the	figure.
The	proton	will	experience	a	force	in	which	direction?
(A)			–x
(B)			–y
(C)			–z
(D)			+x
(E)			+z

3	.				A	parallel	plate	capacitor	produces	an	electric	field	perpendicular	to	the
magnetic	field,	as	shown	in	the	figure.	The	magnetic	field	is	directed	into	the
page	in	the	–z	direction.	The	magnetic	and	electric	fields	are	adjusted	so	that
a	particle	of	charge	+1e	,	moving	at	a	velocity	of	v	will	pass	straight	through
the	fields	in	the	+y	direction.	Which	of	the	following	changes	will	cause	the
particle	to	deflect	to	the	left	as	it	passes	through	the	fields?
(A)			Increasing	the	emf	(ε)	of	the	battery
(B)			Doubling	the	charge	to	+2e
(C)			Changing	the	sign	of	the	charge	to	–1e
(D)			Increasing	the	velocity	of	the	particle
(E)			Decreasing	the	magnetic	field	strength



4	.				A	lab	cart	with	a	rectangular	loop	of	metal	wire	fixed	to	the	top	travels
along	a	frictionless	horizontal	track,	as	shown	in	the	figure.	While	traveling
to	the	right,	the	cart	encounters	a	region	of	space	with	a	strong	magnetic	field
directed	into	the	page.	Which	of	the	following	graphs	best	depicts	the
velocity	of	the	cart	as	a	function	of	time	as	it	enters,	passes	through,	and
finally	exits	the	magnetic	field	on	its	journey?

(A)			

(B)			

(C)			

(D)			



(E)			

	Answers

1	.				E—Using	the	right	hand	rule	(RHR)	for	magnetic	fields	around	current
carrying	wires,	we	determine	that	the	magnetic	field	rotates	clockwise
around	the	left	wire	and	counterclockwise	around	the	right	wire.	Thus,
choices	A,	B,	and	C	cannot	be	correct	because	the	two	B-fields	combine	in
the	downward	direction.	Thus,	the	viable	options	are	choices	D	and	E.	Using

the	equation	 	,	we	see	that	the	left	wire,	with	twice	the	current,

must	also	have	twice	the	radius	to	produce	the	same	size	B-field	as	the	right

wire:	 	.	Choice	E	satisfies	this	condition.

2	.				D	—Using	the	right	hand	rule	(RHR)	for	a	current	carrying	wire,	we	can
determine	that	the	magnetic	field	around	the	wire	point	is	the	–z	direction	in
the	vicinity	of	the	proton.	Using	the	RHR	for	forces	on	moving	charges,	we
can	determine	that	the	proton	will	experience	a	magnetic	force	in	the	+x
direction.

3	.				D	—For	a	charged	particle	to	cross	straight	through	crossed	perpendicular
magnetic	and	electric	fields,	the	electric	and	magnetic	forces	on	the	charge
must	cancel	each	other	out:

Note	that	since	the	velocity	is	perpendicular	to	the	magnetic	field,	sinθ	=
sin(90°)	=	1.	Therefore,	E	=	vB	when	the	charge	travels	in	a	straight	line
thorough	the	fields.	The	electric	force	on	the	proton	is	directed	to	the	right,
while	the	magnetic	force	goes	to	the	left.	Therefore,	to	deflect	the	charge	to
the	left,	either	the	electric	field	must	decrease,	the	magnetic	field	must



increase,	or	the	velocity	of	the	charge	must	be	increased.	Note	that	changing
the	charge	will	have	no	effect	because	the	charge	q	cancels	out	in	the
preceding	equation.

4	.				B	—A	retarding	force	will	be	present	when	there	is	a	change	in	magnetic
flux	through	the	metal	loop	of	wire:

This	occurs	only	when	the	cart	is	entering	the	front	edge	and	leaving	the
back	edge	of	the	field.	No	change	in	speed	occurs	while	the	cart	is	fully
immersed	in	the	magnetic	field,	as	there	is	no	change	in	flux.	Therefore,
choice	A	is	incorrect	because	it	shows	no	change	in	velocity.	Choices	D	and
E	are	also	incorrect	because	they	show	only	a	single,	continuous,	retarding
force	slowing	the	cart	down.	Choice	B	is	the	best	of	the	remaining	options.
The	retarding	force	is

FB	=	ILB	sinθ	=	ILB

and	the	current	is	given	by

where	the	induced	voltage	is

ε	=	V	=	BLv

Combining	these	equations,	we	get	the	retarding	force	on	the	cart	and	loop:

FB	=	B2	L2	v

This	means	the	magnetic	force	and	the	acceleration	of	the	cart	are	directly
related	to	the	velocity.	The	cart	slows	down	when	it	enters	the	magnetic	field
and	again	when	it	leaves	the	field.	Since	the	velocity	of	the	cart	when	exiting
the	field	will	be	less	than	when	first	entering	the	field,	the	retarding	force
will	be	less	when	exiting	the	field.	The	resulting	acceleration,	and	thus	the
slope	of	the	v-t	graph,	will	be	less	when	exiting	the	field.
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Physics	C—Mechanics	Practice	Exam—Multiple-
Choice	Questions

Time:	45	minutes.	You	may	refer	to	the	constants	sheet	and	the	equation	sheet,
both	of	which	are	found	in	the	appendix.	You	may	use	a	calculator.

1	.				A	cannon	is	mounted	on	a	truck	that	moves	forward	at	a	speed	of	5	m/s.
The	operator	wants	to	launch	a	ball	from	a	cannon	so	the	ball	goes	as	far	as
possible	before	hitting	the	level	surface.	The	muzzle	velocity	of	the	cannon
is	50	m/s.	At	what	angle	from	the	horizontal	should	the	operator	point	the
cannon?
(A)	5°
(B)	41°
(C)	45°
(D)	49°
(E)	85°

2	.				A	car	moving	with	speed	v	reaches	the	foot	of	an	incline	of	angle	θ	.	The
car	coasts	up	the	incline	without	using	the	engine.	Neglecting	friction	and
air	resistance,	which	of	the	following	is	correct	about	the	magnitude	of	the
car’s	horizontal	acceleration	a	x	and	vertical	acceleration	a	y	?

(A)	a	x	=	0;	a	y	<	g
(B)	a	x	=	0;	a	y	=	g
(C)	a	x	<	g	;	a	y	<	g
(D)	a	x	<	g	;	a	y	=	g
(E)	a	x	<	g	;	a	y	>	g

3	.				A	bicycle	slows	down	with	an	acceleration	whose	magnitude	increases
linearly	with	time.	Which	of	the	following	velocity–time	graphs	could
represent	the	motion	of	the	bicycle?



(A)	

(B)	

(C)	

(D)	

(E)	

4	.				A	cart	is	sliding	down	a	low	friction	incline.	A	device	on	the	cart	launches
a	ball,	forcing	the	ball	perpendicular	to	the	incline,	as	shown	above.	Air



resistance	is	negligible.	Where	will	the	ball	land	relative	to	the	cart,	and
why?
(A)	The	ball	will	land	in	front	of	the	cart,	because	the	ball’s	acceleration

component	parallel	to	the	plane	is	greater	than	the	cart’s	acceleration
component	parallel	to	the	plane.

(B)	The	ball	will	land	in	front	of	the	cart,	because	the	ball	has	a	greater
magnitude	of	acceleration	than	the	cart.

(C)	The	ball	will	land	in	the	cart,	because	both	the	ball	and	the	cart	have	the
same	component	of	acceleration	parallel	to	the	plane.

(D)	The	ball	will	land	in	the	cart,	because	both	the	ball	and	the	cart	have	the
same	magnitude	of	acceleration.

(E)	The	ball	will	land	behind	the	cart,	because	the	ball	slows	down	in	the
horizontal	direction	after	it	leaves	the	cart.

5	.				The	quantity	“jerk,”	j	,	is	defined	as	the	time	derivative	of	an	object’s
acceleration,

What	is	the	physical	meaning	of	the	area	under	a	graph	of	jerk	vs.	time?
(A)	The	area	represents	the	object’s	acceleration.
(B)	The	area	represents	the	object’s	change	in	acceleration.
(C)	The	area	represents	the	object’s	change	in	velocity.
(D)	The	area	represents	the	object’s	velocity.
(E)	The	area	represents	the	object’s	change	in	position.

6	.				A	particle	moves	along	the	x	-axis	with	a	position	given	by	the	equation	x
(t	)	=	5	+	3t	,	where	x	is	in	meters,	and	t	is	in	seconds.	The	positive	direction
is	east.	Which	of	the	following	statements	about	the	particle	is	FALSE.
(A)	The	particle	is	east	of	the	origin	at	t	=	0.
(B)	The	particle	is	at	rest	at	t	=	0.
(C)	The	particle’s	velocity	is	constant.
(D)	The	particle’s	acceleration	is	constant.
(E)	The	particle	will	never	be	west	of	position	x	=	0.



7	.				A	mass	hangs	from	two	ropes	at	unequal	angles,	as	shown	above.	Which
of	the	following	makes	correct	comparisons	of	the	horizontal	and	vertical
components	of	the	tension	in	each	rope?

(A)	

(B)	

(C)	

(D)	

(E)	

8	.				The	force	of	air	resistance	F	on	a	mass	is	found	to	obey	the	equation	F	=
bv	2	,	where	v	is	the	speed	of	the	mass,	for	the	range	of	speeds	investigated
in	an	experiment.	A	graph	of	F	vs.	v	2	is	shown	above.	What	is	the	value	of
b	?



(A)	0.83	kg/m
(B)	1.7	kg/m
(C)	3.0	kg/m
(D)	5.0	kg/m
(E)	1.0	kg/m

9	.				A	box	sits	on	an	inclined	plane	without	sliding.	As	the	angle	of	the	plane
(measured	from	the	horizontal)	increases,	the	normal	force
(A)	increases	linearly
(B)	decreases	linearly
(C)	does	not	change
(D)	decreases	nonlinearly
(E)	increases	nonlinearly

10	.				Which	of	the	following	conditions	are	necessary	for	an	object	to	be	in
static	equilibrium?

I.	The	vector	sum	of	all	torques	on	the	object	must	equal	zero.
II.	The	vector	sum	of	all	forces	on	the	object	must	equal	zero.
III.	The	sum	of	the	object’s	potential	and	kinetic	energies	must	be	zero.
(A)	I	only
(B)	II	only
(C)	III	only
(D)	I	and	II	only
(E)	I,	II,	and	III

11	.				A	student	pushes	a	big	16-kg	box	across	the	floor	at	constant	speed.	He
pushes	with	a	force	of	50	N	angled	35°	from	the	horizontal,	as	shown	in	the
diagram	above.	If	the	student	pulls	rather	than	pushes	the	box	at	the	same
angle,	while	maintaining	a	constant	speed,	what	will	happen	to	the	force	of
friction?

(A)	It	must	increase.



(B)	It	must	decrease.
(C)	It	must	remain	the	same.
(D)	It	will	increase	only	if	the	speed	is	greater	than	3.1	m/s.
(E)	It	will	increase	only	if	the	speed	is	less	than	3.1	m/s.

12	.				Consider	a	system	consisting	only	of	the	Earth	and	a	bowling	ball,	which
moves	upward	in	a	parabola	above	Earth’s	surface.	The	downward	force	of
Earth’s	gravity	on	the	ball,	and	the	upward	force	of	the	ball’s	gravity	on	the
Earth,	form	a	Newton’s	third	law	force	pair.	Which	of	the	following
statements	about	the	ball	is	correct?

(A)	The	ball	must	be	in	equilibrium	since	the	upward	forces	must	cancel
downward	forces.

(B)	The	ball	accelerates	toward	the	Earth	because	the	force	of	gravity	on
the	ball	is	greater	than	the	force	of	the	ball	on	the	Earth.

(C)	The	ball	accelerates	toward	the	Earth	because	the	force	of	gravity	on
the	ball	is	the	only	force	acting	on	the	ball.

(D)	The	ball	accelerates	away	from	Earth	because	the	force	causing	the	ball
to	move	upward	is	greater	than	the	force	of	gravity	on	the	ball.

(E)	The	ball	accelerates	away	from	Earth	because	the	force	causing	the	ball
to	move	upward	plus	the	force	of	the	ball	on	the	Earth	are	together
greater	than	the	force	of	gravity	on	the	ball.

13	.				A	mass	m	is	attached	to	a	mass	3m	by	a	rigid	bar	of	negligible	mass	and
length	L	.	Initially,	the	smaller	mass	is	located	directly	above	the	larger
mass,	as	shown	above.	How	much	work	is	necessary	to	flip	the	rod	180°	so
that	the	larger	mass	is	directly	above	the	smaller	mass?



(A)	4mgL
(B)	2mgL
(C)	mgL
(D)	4πmgL
(E)	2πmgL

14	.				A	ball	rolls	horizontally	with	speed	v	off	of	a	table	a	height	h	above	the
ground.	Just	before	the	ball	hits	the	ground,	what	is	its	speed?

(A)	

(B)	

(C)	

(D)	v

(E)	

15	.				A	pendulum	is	launched	into	simple	harmonic	motion	in	two	different
ways,	as	shown	above,	from	a	point	that	is	a	height	h	above	its	lowest	point.
During	both	launches,	the	bob	is	given	an	initial	speed	of	3.0	m/s.	On	the
first	launch,	the	initial	velocity	of	the	bob	is	directed	upward	along	the
pendulum’s	path,	and	on	the	second	launch	it	is	directed	downward	along



the	pendulum’s	path.	Which	launch	will	cause	the	pendulum	to	swing	with
the	larger	amplitude?

(A)	the	first	launch
(B)	the	second	launch
(C)	Both	launches	produce	the	same	amplitude.
(D)	The	answer	depends	on	the	initial	height	h	.
(E)	The	answer	depends	on	the	length	of	the	supporting	rope.

16	.				The	mass	M	is	moving	to	the	right	with	velocity	v	0	at	position	x	=	x	0	.
Neglect	friction.	The	spring	has	force	constant	k	.	What	is	the	total
mechanical	energy	of	the	block	at	this	position?

(A)	

(B)	

(C)	

(D)	

(E)	

17	.				A	sphere,	a	cube,	and	a	cylinder,	all	of	equal	mass,	are	released	from	rest
from	the	top	of	a	short	incline.	The	surface	of	the	incline	is	extremely	slick,
so	much	so	that	the	objects	do	not	rotate	when	released,	but	rather	slide
with	negligible	friction.	Which	reaches	the	base	of	the	incline	first?

(A)	the	sphere
(B)	the	cube
(C)	the	cylinder
(D)	All	reach	the	base	at	the	same	time.
(E)	The	answer	depends	on	the	relative	sizes	of	the	objects.



18	.				Block	B	is	at	rest	on	a	smooth	tabletop.	It	is	attached	to	a	long	spring,
which	is	in	turn	anchored	to	the	wall.	Block	A	slides	toward	and	collides
with	block	B	.	Consider	two	possible	collisions:

Collision	I:	Block	A	bounces	back	off	of	block	B	.
Collision	II:	Block	A	sticks	to	block	B	.

Which	of	the	following	is	correct	about	the	speed	of	block	B	immediately	after
the	collision?

(A)	It	is	faster	in	case	II	than	in	case	I	ONLY	if	block	B	is	heavier.
(B)	It	is	faster	in	case	I	than	in	case	II	ONLY	if	block	B	is	heavier.
(C)	It	is	faster	in	case	II	than	in	case	I	regardless	of	the	mass	of	each	block.
(D)	It	is	faster	in	case	I	than	in	case	II	regardless	of	the	mass	of	each	block.
(E)	It	is	the	same	in	either	case	regardless	of	the	mass	of	each	block.

19	.				A	0.30-kg	bird	is	flying	from	right	to	left	at	30	m/s.	The	bird	collides	with
and	sticks	to	a	0.50-kg	ball	that	is	moving	straight	up	with	speed	6.0	m/s.
What	is	the	magnitude	of	the	momentum	of	the	ball/bird	combination
immediately	after	collision?

(A)	12.0	N·s
(B)	 9.5	N·s
(C)	 9.0	N·s
(D)	 6.0	N·s
(E)	 3.0	N·s



20	.				The	force	F	on	a	mass	is	shown	above	as	a	function	of	time	t	.	Which	of
the	following	methods	can	be	used	to	determine	the	impulse	experienced	by
the	mass?

I.	multiplying	the	average	force	by	t	max
II.	calculating	the	area	under	the	line	on	the	graph

III.	taking	the	integral	

(A)	II	only
(B)	III	only
(C)	II	and	III	only
(D)	I	and	II	only
(E)	I,	II,	and	III

21	.				A	projectile	is	launched	on	level	ground	in	a	parabolic	path	so	that	its
range	would	normally	be	500	m.	When	the	projectile	is	at	the	peak	of	its
flight,	the	projectile	breaks	into	two	pieces	of	equal	mass.	One	of	these
pieces	falls	straight	down,	with	no	further	horizontal	motion.	How	far	away
from	the	launch	point	does	the	other	piece	land?

(A)	250	m
(B)	375	m
(C)	500	m
(D)	750	m
(E)	1000	m

Questions	22	and	23



A	rigid	rod	of	length	L	and	mass	M	is	floating	at	rest	in	space	far	from	a
gravitational	field.	A	small	blob	of	putty	of	mass	m	<	M	is	moving	to	the
right,	as	shown	above.	The	putty	hits	and	sticks	to	the	rod	a	distance	2L	/3
from	the	top	end.

22	.				How	will	the	rod/putty	contraption	move	after	the	collision?

(A)	The	contraption	will	have	no	translational	motion,	but	will	rotate	about
the	rod’s	center	of	mass.

(B)	The	contraption	will	have	no	translational	motion,	but	will	rotate	about
the	center	of	mass	of	the	rod	and	putty	combined.

(C)	The	contraption	will	move	to	the	right	and	rotate	about	the	position	of
the	putty.

(D)	The	contraption	will	move	to	the	right	and	rotate	about	the	center	of
mass	of	the	rod	and	putty	combined.

(E)	The	contraption	will	move	to	the	right	and	rotate	about	the	rod’s	center
of	mass.

23	.				What	quantities	are	conserved	in	this	collision?

(A)	linear	and	angular	momentum,	but	not	kinetic	energy
(B)	linear	momentum	only
(C)	angular	momentum	only
(D)	linear	and	angular	momentum,	and	linear	but	not	rotational	kinetic

energy
(E)	linear	and	angular	momentum,	and	linear	and	rotational	kinetic	energy

24	.				A	car	rounds	a	banked	curve	of	uniform	radius.	Three	forces	act	on	the



car:	a	friction	force	between	the	tires	and	the	road,	the	normal	force	from
the	road,	and	the	weight	of	the	car.	Which	provides	the	centripetal	force
which	keeps	the	car	in	circular	motion?

(A)	the	friction	force	alone
(B)	the	normal	force	alone
(C)	the	weight	alone
(D)	a	combination	of	the	normal	force	and	the	friction	force
(E)	a	combination	of	the	friction	force	and	the	weight

25	.				A	ball	of	mass	m	anchored	to	a	string	swings	back	and	forth	to	a
maximum	position	A	,	as	shown	above.	Point	C	is	partway	back	to	the
vertical	position.	What	is	the	direction	of	the	mass’s	acceleration	at	point	C
?

(A)	along	the	mass’s	path	toward	point	B
(B)	toward	the	anchor
(C)	away	from	the	anchor
(D)	between	a	line	toward	the	anchor	and	a	line	along	the	mass’s	path
(E)	along	the	mass’s	path	toward	point	A

26	.				In	a	carnival	ride,	people	of	mass	m	are	whirled	in	a	horizontal	circle	by	a



floorless	cylindrical	room	of	radius	r	,	as	shown	in	the	diagram	above.	If	the
coefficient	of	friction	between	the	people	and	the	tube	surface	is	μ	,	what
minimum	speed	is	necessary	to	keep	the	people	from	sliding	down	the
walls?

(A)	

(B)	

(C)	

(D)	

(E)	

Questions	27	and	28

The	uniform,	rigid	rod	of	mass	m	,	length	L	,	and	rotational	inertia	I	shown
above	is	pivoted	at	its	left-hand	end.	The	rod	is	released	from	rest	from	a
horizontal	position.

27	.				What	is	the	linear	acceleration	of	the	rod’s	center	of	mass	the	moment
after	the	rod	is	released?

(A)	

(B)	

(C)	



(D)	

(E)	

28	.				What	is	the	linear	speed	of	the	rod’s	center	of	mass	when	the	mass	passes
through	a	vertical	position?

(A)	

(B)	

(C)	

(D)	

(E)	

29	.				The	1.0-m-long	nonuniform	plank,	shown	above,	has	weight	1000	N.	It	is
to	be	supported	by	two	rods,	A	and	B	,	as	shown	above.	The	center	of	mass
of	the	plank	is	30	cm	from	the	right	edge.	Each	support	bears	half	the



weight	of	the	plank.	If	support	B	is	10	cm	from	the	right-hand	edge,	how	far
from	the	left-hand	edge	should	support	A	be?

(A)	0	cm
(B)	10	cm
(C)	30	cm
(D)	50	cm
(E)	70	cm

30	.				A	mass	m	on	a	spring	oscillates	on	a	horizontal	surface	with	period	T	.	The
total	mechanical	energy	contained	in	this	oscillation	is	E	.	Imagine	that
instead	a	new	mass	4m	oscillates	on	the	same	spring	with	the	same
amplitude.	What	is	the	new	period	and	total	mechanical	energy?

(A)	

(B)				

(C)				

(D)				

(E)				

31	.				A	mass	m	is	attached	to	a	horizontal	spring	of	spring	constant	k	.	The
spring	oscillates	in	simple	harmonic	motion	with	amplitude	A	.	What	is	the
maximum	speed	of	this	simple	harmonic	oscillator?

(A)	

(B)	

(C)	

(D)	

(E)	



32	.				An	empty	bottle	goes	up	and	down	on	the	surface	of	the	ocean,	obeying
the	position	function	x	=	A	cos(ωt	).	How	much	time	does	this	bottle	take	to
travel	once	from	its	lowest	position	to	its	highest	position?

(A)	

(B)	

(C)	

(D)	

(E)	

33	.				The	Space	Shuttle	orbits	300	km	above	the	Earth’s	surface;	the	Earth’s
radius	is	6400	km.	What	is	the	acceleration	due	to	Earth’s	gravity
experienced	by	the	Space	Shuttle?

(A)	4.9	m/s2

(B)	8.9	m/s2

(C)	9.8	m/s2

(D)	10.8	m/s2
(E)	zero

34	.				An	artificial	satellite	orbits	Earth	just	above	the	atmosphere	in	a	circle
with	constant	speed.	A	small	meteor	collides	with	the	satellite	at	point	P	in
its	orbit,	increasing	its	speed	by	1%,	but	not	changing	the	instantaneous
direction	of	the	satellite’s	velocity.	Which	of	the	following	describes	the
satellite’s	new	orbit?

(A)	The	satellite	now	orbits	in	an	ellipse,	with	P	as	the	farthest	approach	to
Earth.

(B)	The	satellite	now	orbits	in	an	ellipse,	with	P	as	the	closest	approach	to
Earth.

(C)	The	satellite	now	orbits	in	a	circle	of	larger	radius.
(D)	The	satellite	now	orbits	in	a	circle	of	smaller	radius.
(E)	The	satellite	cannot	maintain	an	orbit,	so	it	flies	off	into	space.



35	.				Mercury	orbits	the	sun	in	about	one-fifth	of	an	Earth	year.	If	1	AU	is
defined	as	the	distance	from	the	Earth	to	the	sun,	what	is	the	approximate
distance	between	Mercury	and	the	sun?

(A)	(1/25)	AU
(B)	(1/9)	AU
(C)	(1/5)	AU
(D)	(1/3)	AU
(E)	(1/2)	AU

STOP.	End	of	Physics	C—Mechanics	Practice	Exam—Multiple-Choice
Questions



Physics	C—Mechanics	Practice	Exam—Free-
Response	Questions

Time:	45	minutes.	You	may	refer	to	the	Constants	sheet	and	Equations	sheet	in
the	Appendixes.	You	may	also	use	a	calculator	on	this	portion	of	the	exam.

CM	1

Two	5-kg	masses	are	connected	by	a	light	string	over	two	massless,
frictionless	pulleys.	Each	block	sits	on	a	frictionless	inclined	plane,	as
shown	above.	The	blocks	are	released	from	rest.
(a)	Determine	the	magnitude	of	the	acceleration	of	the	blocks.
(b)	Determine	the	tension	in	the	string.
Now	assume	that	the	30°	incline	is	rough,	so	that	the	coefficient	of	friction
between	the	block	and	the	plane	is	0.10.	The	60°	incline	is	still	frictionless.
(c)	Determine	the	magnitude	of	the	acceleration	of	the	blocks.
(d)	Determine	the	tension	in	the	string.

CM	2



A	hollow	glass	sphere	of	radius	8.0	cm	rotates	about	a	vertical	diameter
with	frequency	5	revolutions	per	second.	A	small	wooden	ball	of	mass	2.0
g	rotates	inside	the	sphere,	as	shown	in	the	diagram	above.
(a)	Draw	a	free-body	diagram	indicating	the	forces	acting	on	the	wooden

ball	when	it	is	at	the	position	shown	in	the	picture	above.
(b)	Calculate	the	angle	θ	,	shown	in	the	diagram	above,	to	which	the	ball

rises.
(c)	Calculate	the	linear	speed	of	the	wooden	ball	as	it	rotates.
(d)	The	wooden	ball	is	replaced	with	a	steel	ball	of	mass	20	g.	Describe



how	the	angle	θ	to	which	the	ball	rises	will	be	affected.	Justify	your
answer.

CM	3

A	heavy	ball	of	mass	m	is	attached	to	a	light	but	rigid	rod	of	length	L	.	The
rod	is	pivoted	at	the	top	and	is	free	to	rotate	in	a	circle	in	the	plane	of	the
page,	as	shown	above.
(a)	The	mass	oscillates	to	a	maximum	angle	θ	.	On	the	picture	of	the	mass

m	below,	draw	a	vector	representing	the	direction	of	the	NET	force	on
the	mass	while	it	is	at	angle	θ	.	Justify	your	choice	of	direction.

(b)	Is	the	magnitude	of	the	net	force	at	the	maximum	displacement	equal	to
mg	sinθ	or	mg	cosθ	?	Choose	one	and	justify	your	choice.

(c)	Derive	an	expression	for	the	ball’s	potential	energy	U	as	a	function	of
the	angle	θ	.	Assume	that	a	negative	angle	represents	displacement	from
the	vertical	in	the	clockwise	direction.

(d)	On	the	axes	below,	sketch	a	graph	of	the	mass’s	potential	energy	U	as	a
function	of	the	angle	θ	for	angles	between	−90°	and	+360°.	Label
maximum	and	minimum	values	on	the	vertical	axis.



(e)	The	pendulum	is	considered	a	classic	example	of	simple	harmonic
motion	when	it	undergoes	small-amplitude	oscillation.	With	specific
reference	to	the	graph	you	made	in	part	(d),	explain	why	the	assumption
of	simple	harmonic	motion	is	valid.

STOP.	End	of	Physics	C—Mechanics	Practice	Exam—Free-Response
Questions



Physics	C—Electricity	and	Magnetism	Practice	Exam
—Multiple-Choice	Questions

ANSWER	SHEET



Physics	C—Electricity	and	Magnetism	Practice	Exam
—Multiple-Choice	Questions

Time:	45	minutes.	You	may	refer	to	the	constants	sheet	and	the	equation	sheet,
both	of	which	are	found	in	the	appendix.	You	may	use	a	calculator.

1	.				Experimenter	A	uses	a	very	small	test	charge	q	o	,	and	experimenter	B	uses
a	test	charge	2q	o	to	measure	an	electric	field	produced	by	two	parallel
plates.	A	finds	a	field	that	is
(A)	greater	than	the	field	found	by	B
(B)	the	same	as	the	field	found	by	B
(C)	less	than	the	field	found	by	B
(D)	either	greater	or	less	than	the	field	found	by	B	,	depending	on	the

accelerations	of	the	test	charges
(E)	either	greater	or	less	than	the	field	found	by	B	,	depending	on	the

masses	of	the	test	charges

2	.				A	solid	conducting	sphere	has	radius	R	and	carries	positive	charge	Q	.
Which	of	the	following	graphs	represents	the	electric	field	E	as	a	function
of	the	distance	r	from	the	center	of	the	sphere?

(A)	

(B)	



(C)	

(D)	

(E)	

3	.				An	electron	moving	at	constant	velocity	enters	the	region	between	two
charged	plates,	as	shown	above.	Which	of	the	paths	above	correctly	shows
the	electron’s	trajectory	after	leaving	the	region	between	the	charged	plates?
(A)	A
(B)	B
(C)	C



(D)	D
(E)	E

4	.				Two	isolated	particles,	A	and	B	,	are	4	m	apart.	Particle	A	has	a	net	charge
of	2Q	,	and	B	has	a	net	charge	of	Q	.	The	ratio	of	the	magnitude	of	the
electric	force	on	A	to	that	on	B	is
(A)	4:1
(B)	2:1
(C)	1:1
(D)	1:2
(E)	1:4

5	.				A	uniform	electric	field	points	to	the	left.	A	small	metal	ball	charged	to	−2
mC	hangs	at	a	30°	angle	from	a	string	of	negligible	mass,	as	shown	above.
The	tension	in	the	string	is	measured	to	be	0.1	N.	What	is	the	magnitude	of
the	electric	field?	(sin	30°	=	0.50;	cos	30°	=	0.87;	tan	30°	=	0.58.)
(A)	25	N/C
(B)	50	N/C
(C)	2,500	N/C
(D)	5,000	N/C
(E)	10,000	N/C

6	.				A	thin	semicircular	conductor	of	radius	R	holds	charge	+Q	.	What	is	the



magnitude	and	direction	of	the	electric	field	at	the	center	of	the	circle?

(A)	

(B)	

(C)	

(D)	

(E)	The	electric	field	is	zero	at	the	center.

7	.				Above	an	infinitely	large	plane	carrying	charge	density	σ,	the	electric	field
points	up	and	is	equal	to	σ/2ε	o	.	What	is	the	magnitude	and	direction	of	the
electric	field	below	the	plane?
(A)	σ/2ε	o	,	down
(B)	σ/2ε	o	,	up
(C)	σ/ε	o	,	down
(D)	σ/ε	o	,	up
(E)	zero



8	.				Three	charges	are	arranged	in	an	equilateral	triangle,	as	shown	above.	At
which	of	these	points	is	the	electric	potential	smallest?
(A)	A
(B)	B
(C)	C
(D)	D
(E)	E



9	.				The	diagram	shows	a	set	of	equipotential	surfaces.	At	point	P	,	what	is	the
direction	of	the	electric	field?
(A)	left
(B)	right
(C)	up	the	page
(D)	down	the	page
(E)	either	left	or	right,	which	one	cannot	be	determined

10	.				A	metal	sphere	carries	charge	Q;	a	nonconducting	sphere	of	equal	size
carries	the	same	charge	Q	,	uniformly	distributed	throughout	the	sphere.
These	spheres	are	isolated	from	each	other.	Consider	the	electric	field	at	the
center	of	the	spheres,	within	the	spheres,	and	outside	the	spheres.	Which	of
these	electric	fields	will	be	the	same	for	both	spheres,	and	which	will	be
different?

(A)	

(B)	

(C)	

(D)	

(E)	

11	.				Under	what	conditions	is	the	net	electric	flux	through	a	closed	surface
proportional	to	the	enclosed	charge?

(A)	under	any	conditions
(B)	only	when	the	enclosed	charge	is	symmetrically	distributed
(C)	only	when	all	nearby	charges	are	symmetrically	distributed
(D)	only	when	there	are	no	charges	outside	the	surface
(E)	only	when	enclosed	charges	can	be	considered	to	be	point	charges



12	.				A	hollow	metal	ring	of	radius	r	carries	charge	q	.	Consider	an	axis	straight
through	the	center	of	the	ring.	At	what	point(s)	along	this	axis	is/are	the
electric	field	equal	to	zero?

(A)	only	at	the	center	of	the	ring
(B)	only	at	the	center	of	the	ring,	and	a	very	long	distance	away
(C)	only	a	very	long	distance	away
(D)	only	at	the	center	of	the	ring,	a	distance	r	away	from	the	center,	and	a

very	long	distance	away
(E)	everywhere	along	this	axis

13	.				A	parallel	plate	capacitor	consists	of	identical	rectangular	plates	of
dimensions	a	×	b	,	separated	by	a	distance	c	.	To	cut	the	capacitance	of	this
capacitor	in	half,	which	of	these	quantities	should	be	doubled?

(A)	a
(B)	b
(C)	c
(D)	ab
(E)	abc

14	.				Two	identical	capacitors	are	hooked	in	parallel	to	an	external	circuit.
Which	of	the	following	quantities	must	be	the	same	for	both	capacitors?

I.			the	charge	stored	on	the	capacitor
II.		the	voltage	across	the	capacitor
III.	the	capacitance	of	the	capacitor

(A)	I	only
(B)	II	only
(C)	II	and	III	only
(D)	I	and	III	only
(E)	I,	II,	and	III



15	.				A	2	μ	F	capacitor	is	connected	directly	to	a	battery.	When	the	capacitor	is
fully	charged,	it	stores	600	μ	C	of	charge.	An	experimenter	replaces	the	2	μ
F	capacitor	with	three	18	μ	F	capacitors	in	series	connected	to	the	same
battery.	Once	the	capacitors	are	fully	charged,	what	charge	is	stored	on	each
capacitor?

(A)	100	μ	C
(B)	200	μ	C
(C)	600	μ	C
(D)	1200	μ	C
(E)	1800	μ	C

16	.				A	spherical	conductor	carries	a	net	charge.	How	is	this	charge	distributed
on	the	sphere?

(A)	The	charge	is	evenly	distributed	on	the	surface.
(B)	The	charge	resides	on	the	surface	only;	the	distribution	of	charge	on	the

surface	depends	on	what	other	charged	objects	are	near	the	sphere.
(C)	The	charge	moves	continually	within	the	sphere.
(D)	The	charge	is	distributed	uniformly	throughout	the	sphere.
(E)	The	charge	resides	within	the	sphere;	the	distribution	of	charge	within

the	sphere	depends	on	what	other	charged	objects	are	near	the	sphere.

17	.				Three	resistors	are	connected	to	a	battery	as	shown	in	the	diagram	above.
The	switch	is	initially	open.	When	the	switch	is	closed,	what	happens	to	the
total	voltage,	current,	and	resistance	in	the	circuit?



18	.				In	the	circuit	shown	above,	the	0.5-F	capacitor	is	initially	uncharged.	The
switch	is	closed	at	time	t	=	0.	What	is	the	time	constant	(the	time	for	the
capacitor	to	charge	to	63%	of	its	maximum	charge)	for	the	charging	of	this
capacitor?

(A)	5	s
(B)	10	s
(C)	20	s
(D)	30	s
(E)	40	s



19	.				In	the	circuit	shown	above,	what	is	the	current	through	the	3	Ω	resistor?

(A)	0	A
(B)	0.5	A
(C)	1.0	A
(D)	1.5	A
(E)	2.0	A

20	.				A	light	bulb	rated	at	100	W	is	twice	as	bright	as	a	bulb	rated	at	50	W	when
both	are	connected	in	parallel	directly	to	a	100-V	source.	Now	imagine	that
these	bulbs	are	instead	connected	in	series	with	each	other.	Which	is
brighter,	and	by	how	much?

(A)	The	bulbs	have	the	same	brightness.
(B)	The	100-W	bulb	is	twice	as	bright.
(C)	The	50-W	bulb	is	twice	as	bright.
(D)	The	100-W	bulb	is	four	times	as	bright.
(E)	The	50-W	bulb	is	four	times	as	bright.

21	.				A	uniform	magnetic	field	B	is	directed	into	the	page.	An	electron	enters
this	field	with	initial	velocity	v	to	the	right.	Which	of	the	following	best



describes	the	path	of	the	electron	while	it	is	still	within	the	magnetic	field?

(A)	It	moves	in	a	straight	line.
(B)	It	bends	upward	in	a	parabolic	path.
(C)	It	bends	downward	in	a	parabolic	path.
(D)	It	bends	upward	in	a	circular	path.
(E)	It	bends	downward	in	a	circular	path.

22	.				Wire	is	wound	around	an	insulated	circular	donut,	as	shown	above.	A
current	I	flows	in	the	wire	in	the	direction	indicated	by	the	arrows.	The
inner,	average,	and	outer	radii	of	the	donut	are	indicated	by	r	1	,	r	2	,	and	r	3
,	respectively.	What	is	the	magnitude	and	direction	of	the	magnetic	field	at
point	P	,	the	center	of	the	donut?

(A)	zero

(B)	

(C)	

(D)	

(E)	



23	.				A	wire	carries	a	current	toward	the	top	of	the	page.	An	electron	is	located
to	the	right	of	the	wire,	as	shown	above.	In	which	direction	should	the
electron	be	moving	if	it	is	to	experience	a	magnetic	force	toward	the	wire?

(A)	into	the	page
(B)	out	of	the	page
(C)	toward	the	bottom	of	the	page
(D)	toward	the	top	of	the	page
(E)	to	the	right

24	.				Which	of	the	following	statements	about	electric	and	magnetic	fields	is
FALSE:

(A)	A	charge	moving	along	the	direction	of	an	electric	field	will	experience
a	force,	but	a	charge	moving	along	the	direction	of	a	magnetic	field	will
not	experience	a	force.

(B)	All	charges	experience	a	force	in	an	electric	field,	but	only	moving
charges	can	experience	a	force	in	a	magnetic	field.

(C)	A	positive	charge	moves	in	the	direction	of	an	electric	field;	a	positive
charge	moves	perpendicular	to	a	magnetic	field.

(D)	All	moving	charges	experience	a	force	parallel	to	an	electric	field	and
perpendicular	to	a	magnetic	field.

(E)	A	negative	charge	experiences	a	force	opposite	the	direction	of	an
electric	field;	a	negative	charge	experiences	a	force	perpendicular	to	a
magnetic	field.

25	.				Which	of	these	quantities	decreases	as	the	inverse	square	of	distance	for
distances	far	from	the	objects	producing	the	fields?

(A)	the	electric	field	produced	by	a	finite-length	charged	rod



(B)	the	electric	field	produced	by	an	infinitely	long	charged	cylinder
(C)	the	electric	field	produced	by	an	infinite	plane	of	charge
(D)	the	magnetic	field	produced	by	an	infinitely	long,	straight	current-

carrying	wire
(E)	the	magnetic	field	produced	by	a	wire	curled	around	a	torus

26	.				A	proton	enters	a	solenoid.	Upon	entry,	the	proton	is	moving	in	a	straight
line	along	the	axis	of	the	solenoid.	Which	of	the	following	is	a	correct
description	of	the	proton’s	motion	within	the	solenoid?

(A)	The	proton	will	be	bent	in	a	parabolic	path.
(B)	The	proton	will	be	bent	in	a	circular	path.
(C)	The	proton	will	continue	in	its	straight	path	at	constant	velocity.
(D)	The	proton	will	continue	in	its	straight	path	and	slow	down.
(E)	The	proton	will	continue	in	its	straight	path	and	speed	up.

27	.				A	uniform	magnetic	field	points	into	the	page.	Three	subatomic	particles
are	shot	into	the	field	from	the	left-hand	side	of	the	page.	All	have	the	same
initial	speed	and	direction.	These	particles	take	paths	A,	B,	and	C,	as
labeled	in	the	diagram	above.	Which	of	the	following	is	a	possible	identity
for	each	particle?



28	.				The	electric	dipole	shown	above	consists	of	equal-magnitude	charges	and
has	an	initial	leftward	velocity	v	in	a	uniform	magnetic	field	pointing	out	of
the	page,	as	shown	above.	The	dipole	experiences

(A)	a	clockwise	net	torque,	and	a	net	force	to	the	left
(B)	a	counterclockwise	net	torque,	and	a	net	force	to	the	left
(C)	no	net	torque,	and	a	net	force	to	the	left
(D)	a	counterclockwise	net	torque,	and	no	net	force
(E)	a	clockwise	net	torque,	and	no	net	force

29	.				A	beam	of	electrons	has	speed	107	m/s.	It	is	desired	to	use	the	magnetic
field	of	the	Earth,	5	×	10−5	T,	to	bend	the	electron	beam	into	a	circle.	What
will	be	the	radius	of	this	circle?

(A)	1	nm
(B)	1	μ	m
(C)	1	mm
(D)	1	m
(E)	1	km

30	.				A	very	small	element	of	wire	of	length	dL	carries	a	current	I	.	What	is	the
direction	of	the	magnetic	field	produced	by	this	current	element	at	point	P	,
shown	above?

(A)	to	the	right
(B)	toward	the	top	of	the	page



(C)	into	the	page
(D)	out	of	the	page
(E)	there	is	no	magnetic	field	produced	at	point	P	by	this	element.

31	.				A	loop	of	wire	surrounds	a	hole	in	a	table,	as	shown	above.	A	bar	magnet
is	dropped,	north	end	down,	from	far	above	the	table	through	the	hole.	Let
the	positive	direction	of	current	be	defined	as	counterclockwise	as	viewed
from	above.	Which	of	the	following	graphs	best	represents	the	induced
current	I	in	the	loop?

(A)	

(B)	

(C)	



(D)	

(E)	

32	.				A	rectangular	loop	of	wire	has	dimensions	a	×	b	and	includes	a	resistor	R	.
This	loop	is	pulled	with	speed	v	from	a	region	of	no	magnetic	field	into	a
uniform	magnetic	field	B	pointing	through	the	loop,	as	shown	above.	What
is	the	magnitude	and	direction	of	the	current	through	the	resistor?

(A)	Bav	/R	,	left-to-right
(B)	Bbv	/R	,	left-to-right
(C)	Bav	/R	,	right-to-left
(D)	Bbv	/R	,	right-to-left
(E)	Bba	/R	,	right-to-left



33	.				A	conducting	wire	sits	on	smooth	metal	rails,	as	shown	above.	A	variable
magnetic	field	points	out	of	the	page.	The	strength	of	this	magnetic	field	is
increased	linearly	from	zero.	Immediately	after	the	field	starts	to	increase,
what	will	be	the	direction	of	the	current	in	the	wire	and	the	direction	of	the
wire’s	motion?

34	.				A	uniform	magnetic	field	B	points	parallel	to	the	ground.	A	toy	car	is
sliding	down	a	frictionless	plane	inclined	at	30°.	A	loop	of	wire	of
resistance	R	and	cross-sectional	area	A	lies	in	the	flat	plane	of	the	car’s
body,	as	shown	above.	What	is	the	magnetic	flux	through	the	wire	loop?



(A)	zero
(B)	BA	cos	30°
(C)	BA	cos	60°
(D)	BA
(E)	(BA	cos	60°)/R

35	.				If	the	two	equal	resistors	R	1	and	R	2	are	connected	in	parallel	to	a	10-V
battery	with	no	other	circuit	components,	the	current	provided	by	the
battery	is	I	.	In	the	circuit	shown	above,	an	inductor	of	inductance	L	is
included	in	series	with	R	2	.	What	is	the	current	through	R	2	after	the	circuit
has	been	connected	for	a	long	time?

(A)	zero
(B)	(1/4)	I
(C)	(1/2)	I
(D)	I

(E)	

STOP.	End	of	Physics	C—Electricity	and	Magnetism	Practice	Exam—
Multiple-Choice	Questions



Physics	C—Electricity	and	Magnetism	Practice	Exam
—Free-Response	Questions

Time:	45	minutes.	You	may	refer	to	the	constants	sheet	and	the	equation	sheet,
both	of	which	are	found	in	the	appendix.	You	may	use	a	calculator.

E&M	1

A	metal	sphere	of	radius	R	1	carries	charge	+Q	.	A	concentric	spherical
metal	shell,	of	inner	radius	R	2	and	outer	radius	R	3	,	carries	charge	+2Q	.

(a)	Let	r	represent	the	distance	from	the	center	of	the	spheres.	Calculate	the
electric	field	as	a	function	of	r	in	each	of	the	following	four	regions:

1.	between	r	=	0	and	r	=	R	1
2.	between	r	=	R	1	and	r	=	R	2
3.	between	r	=	R	2	and	r	=	R	3



4.	between	r	=	R	3	and	r	=	o

(b)	How	much	charge	is	on	each	surface	of	the	outer	spherical	shell?	Justify
your	answer.

(c)	Determine	the	electric	potential	of	the	outer	spherical	shell.
(d)	Determine	the	electric	potential	of	the	inner	metal	sphere.

E&M	2

A	1	MΩ	resistor	is	connected	to	the	network	of	capacitors	shown	above.
The	circuit	is	hooked	to	a	10-V	battery.	The	capacitors	are	initially
uncharged.	The	battery	is	connected,	and	the	switch	is	closed	at	time	t	=	0.
(a)	Determine	the	equivalent	capacitance	of	C	1	,	C	2	,	and	C	3	.
(b)	Determine	the	charge	on	and	voltage	across	each	capacitor	after	a	long

time	has	elapsed.
(c)	On	the	axes	below,	sketch	the	total	charge	on	C	3	as	a	function	of	time.

(d)	After	the	capacitors	have	been	fully	charged,	the	switch	is	opened,
disconnecting	C	1	and	C	2	from	the	circuit.	What	happens	to	the	voltage
across	and	charge	on	C	3	?	Justify	your	answer.



E&M	3

In	the	laboratory,	far	from	the	influence	of	other	magnetic	fields,	the
Earth’s	magnetic	field	has	a	value	of	5.00	×	10−5	T.	A	compass	in	this	lab
reads	due	north	when	pointing	along	the	direction	of	Earth’s	magnetic
field.

A	long,	straight	current-carrying	wire	is	brought	close	to	the	compass,
deflecting	the	compass	to	the	position	shown	above,	48°	west	of	north.
(a)	Describe	one	possible	orientation	of	the	wire	and	the	current	it	carries

that	would	produce	the	deflection	shown.
(b)	Calculate	the	magnitude	B	wire	of	the	magnetic	field	produced	by	the

wire	that	would	cause	the	deflection	shown.
(c)	The	distance	d	from	the	wire	to	the	compass	is	varied,	while	the	current

in	the	wire	is	kept	constant;	a	graph	of	B	wire	vs.	d	is	produced.	On	the
axes	below,	sketch	the	shape	of	this	graph.



(d)	It	is	desired	to	adjust	this	plot	so	that	the	graph	becomes	a	straight	line.
The	vertical	axis	is	to	remain	B	wire	,	the	magnetic	field	produced	by	the
wire.	How	could	the	quantity	graphed	on	the	horizontal	axis	be	adjusted
to	produce	a	straight-line	graph?	Justify	your	answer.

(e)	The	current	carried	by	the	wire	is	500	mA.	Determine	the	slope	of	the
line	on	the	graph	suggested	in	part	(d).

STOP.	End	of	Physics	C—Electricity	and	Magnetism	Practice	Exam—Free-
Response	Questions



Physics	C—Mechanics	Practice	Exam—Multiple-
Choice	Solutions

1	.				D	—A	projectile	has	its	maximum	range	when	it	is	shot	at	an	angle	of	45°
relative	to	the	ground.	The	cannon’s	initial	velocity	relative	to	the	ground	in
this	problem	is	given	by	the	vector	sum	of	the	man’s	5	m/s	forward	motion
and	the	cannon’s	50	m/s	muzzle	velocity.	To	get	a	resultant	velocity	of	45°,
the	man	must	shoot	the	cannon	at	only	a	slightly	higher	angle,	as	shown	in
the	diagram	below.

2	.				C	—The	car	stays	on	the	plane,	and	slows	down	as	it	goes	up	the	plane.
Thus,	the	net	acceleration	is	in	the	direction	down	the	plane,	which	has	both
a	nonzero	horizontal	and	vertical	component.	The	car	is	not	in	free	fall,	so
its	vertical	acceleration	is	less	than	g	.

3	.				E	—Acceleration	is	the	slope	of	the	v	–t	graph.	Because	acceleration
increases,	the	slope	of	the	v	–t	graph	must	get	steeper,	eliminating	choices	A
and	B.	The	bike	slows	down,	so	the	speed	must	get	closer	to	zero	as	time
goes	on,	eliminating	choices	C	and	D.

4	.				C	—The	cart’s	acceleration	is	g	sinθ	,	down	the	plane,	the	ball’s
acceleration	is	g	,	straight	down.	(So	the	magnitudes	of	acceleration	are
different	and	choice	D	is	wrong.)	The	component	of	the	ball’s	acceleration
along	an	axis	parallel	to	the	plane	is	also	g	sinθ	,	equal	to	the	ball’s
acceleration	component.

5	.				B	—The	area	under	a	jerk–time	graph	is	the	quantity	jdt	.	The	derivative



can	be	interpreted	as	a	change	in	acceleration	over	a	time	interval,

Solving	algebraically,	j	Δt	is	Δa	,	meaning	the	change	in	acceleration.

6	.				B	—At	t	=	0,	x	=	+5	m,	so	the	particle	is	east	of	the	origin	to	start	with.
The	velocity	is	given	by	the	derivative	of	the	position	function,	v	(t	)	=	3
m/s.	This	is	a	constant	velocity;	the	acceleration	is	thus	zero	(and	constant),
but	at	t	=	0	the	velocity	is	also	3	m/s,	so	choice	B	is	false.

7	.				B	—Consider	the	horizontal	and	vertical	forces	separately.	The	only
horizontal	forces	are	the	horizontal	components	of	the	tensions.	Because	the
block	is	in	equilibrium,	these	horizontal	tensions	must	be	equal	,	meaning
only	choices	B	and	D	can	be	right.	But	the	ropes	can’t	have	equal	horizontal
AND	vertical	tensions,	otherwise	they’d	hang	at	equal	angles.	So	D	can’t	be
the	right	choice,	and	B	must	be	right.

8	.				B	—The	equation	F	=	bv	2	is	of	the	form	y	=	mx	,	the	equation	of	a	line.
Here	F	is	the	vertical	axis,	v	2	is	the	horizontal	axis,	so	b	is	the	slope	of	the
line.	Looking	at	the	graph,	the	slope	is	5.0	N/3.0	m2	/s2	=	1.7	kg/m.

9	.				D	—Because	no	forces	act	perpendicular	to	the	incline	except	for	the
normal	force	and	the	perpendicular	component	of	weight,	and	there	is	no
acceleration	perpendicular	to	the	incline,	the	normal	force	is	equal	to	the
perpendicular	component	of	weight,	which	is	mg	cosθ	.	As	the	angle
increases,	the	cosine	of	the	angle	decreases.	This	decrease	is	nonlinear
because	a	graph	of	FN	vs.	θ	would	show	a	curve,	not	a	line.

10	.				D	—In	equilibrium,	the	net	force	and	the	net	torque	must	both	be	zero.
Static	equilibrium	means	the	object	is	stationary,	so	kinetic	energy	must	be
zero.	However,	potential	energy	can	take	on	any	value—a	sign	suspended
above	a	roadway	is	in	static	equilibrium,	yet	has	potential	energy	relative	to
Earth’s	surface.



11	.				B	—The	friction	force	is	equal	to	the	coefficient	of	friction	times	the
normal	force.	The	coefficient	of	friction	is	a	property	of	the	surfaces	in
contact,	and	thus	will	not	change	here.	However,	the	normal	force	decreases
when	the	cart	is	pulled	rather	than	pushed—the	surface	must	apply	more
force	to	the	box	when	there	is	a	downward	component	to	the	applied	force
than	when	there	is	an	upward	component.	Speed	is	irrelevant	because
equilibrium	in	the	vertical	direction	is	maintained	regardless.

12	.				C	—The	ball	accelerates	toward	the	Earth	because,	although	it	is	moving
upward,	it	must	be	slowing	down.	The	only	force	acting	on	the	ball	is
Earth’s	gravity.	Yes,	the	ball	exerts	a	force	on	the	Earth,	but	that	force	acts
on	the	Earth,	not	the	ball.	According	to	Newton’s	third	law,	force	pairs
always	act	on	different	objects,	and	thus	can	never	cancel.

13	.				B	—The	work	done	on	an	object	by	gravity	is	independent	of	the	path
taken	by	the	object	and	is	equal	to	the	object’s	weight	times	its	vertical
displacement.	Gravity	must	do	3mgL	of	work	to	raise	the	large	mass,	but
must	do	mg	(−L	)	of	work	to	lower	the	small	mass.	The	net	work	done	is
thus	2mgL	.

14	.				C	—Use	conservation	of	energy.	Position	1	will	be	the	top	of	the	table;
position	2	will	be	the	ground.	PE1	+	KE1	=	PE2	+	KE2	.	Take	the	PE	at	the
ground	to	be	zero.	Then	 	.	The	m	s	cancel.	Solving
for	v	2	,	you	get	choice	C.	(Choice	E	is	wrong	because	it’s	illegal	algebra	to
take	a	squared	term	out	of	a	square	root	when	it	is	added	to	another	term.)

15	.				C	—Consider	the	conservation	of	energy.	At	the	launch	point,	the
potential	energy	is	the	same	regardless	of	launch	direction.	The	kinetic
energy	is	also	the	same	because	KE	depends	on	speed	alone	and	not
direction.	So,	both	balls	have	the	same	amount	of	kinetic	energy	to	convert
to	potential	energy,	bringing	the	ball	to	the	same	height	in	every	cycle.

16	.				B	—Total	mechanical	energy	is	defined	as	kinetic	energy	plus	potential
energy.	The	KE	here	is	1	/	2	mv	0	2	.	The	potential	energy	is	provided
entirely	by	the	spring—gravitational	potential	energy	requires	a	vertical
displacement,	which	doesn’t	occur	here.	The	PE	of	the	spring	is	1	/	2	kx	0	2	.

17	.				D	—When	an	object	rotates,	some	of	its	potential	energy	is	converted	to



rotational	rather	than	linear	kinetic	energy,	and	thus	it	moves	more	slowly
than	a	non-rotating	object	when	it	reaches	the	bottom	of	the	plane.
However,	here	none	of	the	objects	rotate!	The	acceleration	does	not	depend
on	mass	or	size.

18	.				D	—Momentum	must	be	conserved	in	the	collision.	If	block	A	bounces,	it
changes	its	momentum	by	a	larger	amount	than	if	it	sticks.	This	means	that
block	B	picks	up	more	momentum	(and	thus	more	speed)	when	block	A
bounces.	The	mass	of	the	blocks	is	irrelevant	because	the	comparison	here
is	just	between	bouncing	and	not	bouncing.	So	B	goes	faster	in	collision	I
regardless	of	mass.

19	.				B	—The	momentum	of	the	bird	before	collision	is	9	N·s	to	the	left;	the
momentum	of	the	ball	is	initially	3	N·s	up.	The	momentum	after	collision	is
the	vector	sum	of	these	two	initial	momentums.	With	a	calculator	you
would	use	the	Pythagorean	theorem	to	get	9.5	N·s;	without	a	calculator	you
should	just	notice	that	the	resultant	vector	must	have	magnitude	less	than	12
N·s	(the	algebraic	sum)	and	more	than	9	N·s.

20	.				E	—Impulse	is	defined	on	the	equation	sheet	as	the	integral	of	force	with
respect	to	time,	so	III	is	right.	The	meaning	of	this	integral	is	to	take	the
area	under	a	F	vs.	t	graph,	so	II	is	right.	Because	the	force	is	increasing
linearly,	the	average	force	will	be	halfway	between	zero	and	the	maximum
force,	and	the	rectangle	formed	by	this	average	force	will	have	the	same
area	as	the	triangle	on	the	graph	as	shown,	so	I	is	right.

21	.				D	—The	center	of	mass	of	the	projectile	must	maintain	the	projectile	path
and	land	500	m	from	the	launch	point.	The	first	half	of	the	projectile	fell
straight	down	from	the	peak	of	its	flight,	which	is	halfway	to	the	maximum
range,	or	250	m	from	the	launch	point.	So	the	second	half	of	equal	mass
must	be	250	m	beyond	the	center	of	mass	upon	hitting	the	ground,	or	750	m
from	the	launch	point.

22	.				D	—By	conservation	of	linear	momentum,	there	is	momentum	to	the	right
before	collision,	so	there	must	be	momentum	to	the	right	after	collision	as
well.	A	free-floating	object	rotates	about	its	center	of	mass;	because	the
putty	is	attached	to	the	rod,	the	combination	will	rotate	about	its	combined
center	of	mass.



23	.				A	—Linear	and	angular	momentum	are	conserved	in	all	collisions	(though
often	angular	momentum	conservation	is	irrelevant).	Kinetic	energy,
though,	is	only	conserved	in	an	elastic	collision.	Because	the	putty	sticks	to
the	rod,	this	collision	cannot	be	elastic.	Some	of	the	kinetic	energy	must	be
dissipated	as	heat.

24	.				D.

The	centripetal	force	must	act	toward	the	center	of	the	car’s	circular	path.
This	direction	is	NOT	down	the	plane,	but	rather	is	purely	horizontal.	The
friction	force	acts	down	the	plane	and	thus	has	a	horizontal	component;	the
normal	force	acts	perpendicular	to	the	plane	and	has	a	horizontal
component.	So	BOTH	FN	and	Ff	contribute	to	the	centripetal	force.

25	.				D	—The	mass’s	acceleration	has	two	components	here.	Some	acceleration
must	be	centripetal	(i.e.,	toward	the	anchor)	because	the	mass’s	path	is
circular.	But	the	mass	is	also	speeding	up,	so	it	must	have	a	tangential
component	of	acceleration	toward	point	B	.	The	vector	sum	of	these	two
components	must	be	in	between	the	anchor	and	point	B	.

26	.				B	—The	free-body	diagram	for	a	person	includes	FN	toward	the	center	of
the	circle,	mg	down,	and	the	force	of	friction	up:



Because	the	person	is	not	sliding	down,	mg	=	Ff	.	And	because	the	motion
of	the	person	is	circular,	the	normal	force	is	a	centripetal	force,	so	FN	=	mv
2	/r	.	The	force	of	friction	by	definition	is	μFN	.	Combining	these	equations,
we	have	mg	=	μmv	2	/r	;	solve	for	v	to	get	answer	choice	B.	Note:	Without
any	calculation,	you	could	recognize	that	only	choices	A	and	B	have	units
of	speed,	so	you	would	have	had	a	good	chance	at	getting	the	answer	right
just	by	guessing	one	of	these	two!

27	.				B	—Use	Newton’s	second	law	for	rotation,	τ	net	=	Iα	.	The	only	torque
about	the	pivot	is	the	rod’s	weight,	acting	at	the	rod’s	center;	this	torque	is
thus	mgL	/2.	So	the	angular	acceleration,	α	,	of	the	rod	is	mgL	/2I	.	But	the
question	asks	for	a	linear	acceleration,	a	=	rα	,	where	r	is	the	distance	to	the
center	of	rotation.	That	distance	here	is	L	/2.	So	combining,	you	get	a	=	(L
/2)(mgL	/2I	)	=	mgL	2	/4I	.

28	.				D	—We	cannot	use	rotational	kinematics	here	because	the	net	torque,	and
thus	the	angular	acceleration,	is	not	constant.	Use	conservation	of	energy
instead.	The	potential	energy	at	the	release	point	is	mg	(L	/2)	(L	/2	because
the	rod’s	center	of	mass	is	that	far	vertically	above	its	lowest	point).	This
potential	energy	is	converted	entirely	into	rotational	kinetic	energy	1	/	2	Iω	2

.	The	rod’s	angular	velocity	ω	is	equal	to	v	/(L	/2),	where	v	is	the	linear
speed	of	the	center	of	mass	that	we’re	solving	for.	Plugging	in,	you	get	mgL
/2	=	1	/	2	I	(v	2	/[L	/2]2	).	Solving	for	v	,	choice	D	emerges	from	the
mathematics.

29	.				D	—Choose	any	point	at	all	as	the	fulcrum;	say,	the	center	of	mass.	Rod	B
supports	500	N,	and	is	located	20	cm	from	the	fulcrum,	producing	a	total



counterclockwise	torque	of	10,000	N·cm.	Rod	A	also	supports	500	N;	call
its	distance	from	the	fulcrum	“x	”.	So	10,000	=	500x	,	and	x	=	20	cm.	This
means	Rod	A	is	located	20	cm	left	of	the	center	of	mass,	or	50	cm	from	the
left	edge.

30	.				B	—The	period	of	a	mass	on	a	spring	is

with	the	mass	under	the	square	root.	So	when	the	mass	is	quadrupled,	the
period	is	only	multiplied	by	two.	The	total	mechanical	energy	is	the	sum	of
potential	plus	kinetic	energy.	At	the	greatest	displacement	from	equilibrium
(i.e.,	at	the	amplitude),	the	mass’s	speed	is	zero	and	all	energy	is	potential;
potential	energy	of	a	spring	is	1	/	2	kx	2	and	does	not	depend	on	mass.	So,
because	the	amplitude	of	oscillation	remains	the	same,	the	total	mechanical
energy	does	not	change.

31	.				D	—The	maximum	potential	energy	of	the	mass	is	at	the	amplitude,	and
equal	to	1	/	2	kA	2	.	This	is	entirely	converted	to	kinetic	energy	at	the
equilibrium	position,	where	the	speed	is	maximum.	So	set	

	.	Solving	for	v	max	,	you	get	choice	D.	(Note:	Only
choices	C	and	D	have	units	of	velocity!	So	guess	between	these	if	you	have
to!)

32	.				B	—The	bottle’s	lowest	position	is	x	=	−A	,	and	its	highest	position	is	x	=
+A	.	When	t	=	0,	cos	(0)	=	1	and	the	bottle	is	at	x	=	+A	.	So,	find	the	time
when	the	cosine	function	goes	to	−1.	This	is	when	ωt	=	π,	so	t	=	π/ω	.

33	.				B	—Don’t	try	to	calculate	the	answer	by	saying	mg	=	GMm	/r	2	!	Not	only
would	you	have	had	to	memorize	the	mass	of	the	Earth,	but	you	have	no
calculator	and	you	only	have	a	minute	or	so,	anyway.	So	think:	the
acceleration	must	be	less	than	9.8	m/s2	,	because	that	value	is	calculated	at
the	surface	of	the	Earth,	and	the	Shuttle	is	farther	from	Earth’s	center	than
that.	But	the	added	height	of	300	km	is	a	small	fraction	(∼5%)	of	the
Earth’s	radius.	So	the	gravitational	acceleration	will	not	be	THAT	much
less.	The	best	choice	is	thus	8.9	m/s2	.	(By	the	way,	acceleration	is	not	zero
—if	it	were,	the	Shuttle	would	be	moving	in	a	straight	line,	and	not



orbiting.)

34	.				B	—The	orbit	can	no	longer	be	circular—circular	orbits	demand	a	specific
velocity.	Because	the	satellite	gains	speed	while	at	its	original	distance	from
the	planet,	the	orbit	is	now	elliptical.	Because	the	direction	of	the	satellite’s
motion	is	still	tangent	to	the	former	circular	path,	in	the	next	instant	the
satellite	will	be	farther	from	Earth	than	at	point	P	,	eliminating	answer
choice	A.	The	satellite	will	not	“fly	off	into	space”	unless	it	reaches	escape
velocity,	which	cannot	be	1%	greater	than	the	speed	necessary	for	a	low
circular	orbit.

35	.				D	—Kepler’s	third	law	states	that	for	all	planets	in	the	same	system,	their
period	of	orbit	squared	is	proportional	to	the	average	distance	from	the	sun
cubed.	Using	units	of	years	and	AU,	for	Earth,	(1	year)2	=	(1	AU)3	.	For
Mercury,	we	have	(1	/5	year)2	=	(?	AU)3	.	Solving	for	the	question	mark,
you	find	that	the	distance	from	Mercury	to	the	sun	is	the	cube	root	of	1	/25
AU,	which	is	closest	to	1	/3	AU.



Physics	C—Electricity	and	Magnetism	Practice	Exam
—Multiple-Choice	Solutions

1	.				B	—An	electric	field	exists	regardless	of	the	amount	of	charge	placed	in	it,
and	regardless	of	whether	any	charge	at	all	is	placed	in	it.	So	both
experimenters	must	measure	the	same	field	(though	they	will	measure
different	forces	on	their	test	charges).

2	.				D	—You	could	use	Gauss’s	law	to	show	that	the	field	outside	the	sphere
has	to	decrease	as	1/r	2	,	eliminating	choices	B	and	E.	But	it’s	easier	just	to
remember	that	an	important	result	of	Gauss’s	law	is	that	the	electric	field
inside	a	conductor	is	always	zero	everywhere	,	so	D	is	the	only	possibility.

3	.				B	—While	in	the	region	between	the	plates,	the	negatively	charged
electron	is	attracted	to	the	positive	plate,	so	bends	upward.	But	after	leaving
the	plates,	there	is	no	more	force	acting	on	the	electron.	Thus,	the	electron
continues	in	motion	in	a	straight	line	by	Newton’s	first	law.

4	.				C	—This	is	a	Newton’s	third	law	problem!	The	force	of	A	on	B	is	equal
(and	opposite)	to	the	force	of	B	on	A	.	Or,	we	can	use	Coulomb’s	law:	The
field	due	to	A	is	k	(2Q	)/(4	m)2	.	The	force	on	B	is	QE	=	k	2QQ	/(4	m)2	.	We
can	do	the	same	analysis	finding	the	field	due	to	B	and	the	force	on	A	to	get
the	same	result.

5	.				A	—The	charge	is	in	equilibrium,	so	the	horizontal	component	of	the
tension	must	equal	the	electric	force.	This	horizontal	tension	is	0.1	N	times
sin	30°	(not	cosine	because	30°	was	measured	from	the	vertical	),	or	0.05
N.	The	electric	force	is	qE	,	where	q	is	0.002	C.	So	the	electric	field	is
0.050	N/0.002	C.	Reduce	the	expression	by	moving	the	decimal	to	get	50/2,
or	25	N/C.

6	.				D	—The	answer	could,	in	principle,	be	found	using	the	integral	form	of
Coulomb’s	law.	But	you	can’t	do	that	on	a	one-minute	multiple-choice
problem.	The	electric	field	will	point	down	the	page—the	field	due	to	a
positive	charge	points	away	from	the	charge,	and	there’s	an	equal	amount	of
charge	producing	a	rightward	field	as	a	leftward	field,	so	horizontal	fields



cancel.	So,	is	the	answer	B	or	D?	Choice	B	is	not	correct	because	electric
fields	add	as	vectors.	Only	the	vertical	component	of	the	field	due	to	each
little	charge	element	contributes	to	the	net	electric	field,	so	the	net	field
must	be	less	than	kQ	/R	2	.

7	.				A	—Use	the	symmetry	of	the	situation	to	see	the	answer.	Because	the
infinitely	large	plane	looks	the	same	on	the	up	side	as	the	down	side,	its
electric	field	must	look	the	same,	too—the	field	must	point	away	from	the
plane	and	have	the	same	value.

8	.				C	—Another	way	to	look	at	this	question	is,	“Where	would	a	small
positive	charge	end	up	if	released	near	these	charges?”	because	positive
charges	seek	the	smallest	potential.	The	positive	charge	would	be	repelled
by	the	+2Q	charge	and	attracted	to	the	−Q	charges,	so	would	end	up	at	point
C	.	Or,	know	that	potential	due	to	a	point	charge	is	kq	/r	.	Point	C	is	closest
to	both	−Q	charges,	so	the	r	terms	will	be	smallest,	and	the	negative
contribution	to	the	potential	will	be	largest;	point	C	is	farthest	from	the	+2Q
charge,	so	the	r	term	will	be	large,	and	the	positive	contribution	to	the
potential	will	be	smallest.

9	.				A	—A	positive	charge	is	forced	from	high	to	low	potential,	which	is
generally	to	the	left;	and	the	force	on	a	positive	charge	is	in	the	direction	of
the	electric	field.	At	point	P	itself	the	electric	field	is	directly	to	the	left
because	an	electric	field	is	always	perpendicular	to	equipotential	surfaces.

10	.				C	—The	charge	on	the	metal	sphere	distributes	uniformly	on	its	surface.
Because	the	nonconducting	sphere	also	has	a	uniform	charge	distribution,
by	symmetry	the	electric	fields	will	cancel	to	zero	at	the	center.	Outside	the
spheres	we	can	use	Gauss’s	law:	E	·A	=	Q	enclosed	/ε	o	.	Because	the	charge
enclosed	by	a	Gaussian	surface	outside	either	sphere	will	be	the	same,	and
the	spheres	are	the	same	size,	the	electric	field	will	be	the	same	everywhere
outside	either	sphere.	But	within	the	sphere?	A	Gaussian	surface	drawn
inside	the	conducting	sphere	encloses	no	charge,	while	a	Gaussian	surface
inside	the	nonconducting	sphere	does	enclose	some	charge.	The	fields
inside	must	not	be	equal.

11	.				A	—That’s	what	Gauss’s	law	says:	net	flux	through	a	closed	surface	is
equal	to	the	charge	enclosed	divided	by	ε	o	.	Though	Gauss’s	law	is	only
useful	when	all	charge	within	or	without	a	Gaussian	surface	is



symmetrically	distributed,	Gauss’s	law	is	valid	always.

12	.				B	—The	electric	field	at	the	center	of	the	ring	is	zero	because	the	field
caused	by	any	charge	element	is	canceled	by	the	field	due	to	the	charge	on
the	other	side	of	the	ring.	The	electric	field	decreases	as	1/r	2	by	Coulomb’s
law,	so	a	long	distance	away	from	the	ring	the	field	goes	to	zero.	The	field
is	nonzero	near	the	ring,	though,	because	each	charge	element	creates	a
field	pointing	away	from	the	ring,	resulting	in	a	field	always	along	the	axis.

13	.				C	—Capacitance	of	a	parallel-plate	capacitor	is	ε	o	A	/d	,	where	A	is	the
area	of	the	plates,	and	d	is	the	separation	between	plates.	To	halve	the
capacitance,	we	must	halve	the	area	or	double	the	plate	separation.	The
plate	separation	in	the	diagram	is	labeled	c	,	so	double	distance	c	.

14	.				E	—We	are	told	that	the	capacitors	are	identical,	so	their	capacitances
must	be	equal.	They	are	hooked	in	parallel,	meaning	the	voltages	across
them	must	be	equal	as	well.	By	Q	=	CV	,	the	charge	stored	by	each	must
also	be	equal.

15	.				E	—First	determine	the	voltage	of	the	battery	by	Q	=	CV	.	This	gives	V	=
600	μ	C/2	μ	F	=	300	V.	This	voltage	is	hooked	to	the	three	series	capacitors,
whose	equivalent	capacitance	is	6	μ	F	(series	capacitors	add	inversely,	like
parallel	resistors).	So	the	total	charge	stored	now	is	(6	μ	F)(300	V)	=	1800	μ
C.	This	charge	is	not	split	evenly	among	the	capacitors,	though!	Just	as	the
current	through	series	resistors	is	the	same	through	each	and	equal	to	the
total	current	through	the	circuit,	the	charge	on	series	capacitors	is	the	same
and	equal	to	the	total.

16	.				B	—The	charge	does	reside	on	the	surface,	and,	if	the	conductor	is	alone,
will	distribute	evenly.	But,	if	there’s	another	nearby	charge,	then	this	charge
can	repel	or	attract	the	charge	on	the	sphere,	causing	a	redistribution.

17	.				D	—The	voltage	must	stay	the	same	because	the	battery	by	definition
provides	a	constant	voltage.	Closing	the	switch	adds	a	parallel	branch	to	the
network	of	resistors.	Adding	a	parallel	resistor	reduces	the	total	resistance.
By	Ohm’s	law,	if	voltage	stays	the	same	and	resistance	decreases,	total
current	must	increase.

18	.				C	—The	time	constant	for	an	RC	circuit	is	equal	to	RC	.	The	resistance



used	is	the	resistance	encountered	by	charge	that’s	flowing	to	the	capacitor;
in	this	case,	40	Ω.	So	RC	=	20	s.

19	.				E	—Assume	that	the	current	runs	clockwise	in	the	circuit,	and	use
Kirchoff’s	loop	rule.	Start	with	the	7-V	battery	and	trace	the	circuit	with	the
current:	+	7V	−	I	(3Ω)	+	3V	−	I	(2Ω)	=	0.	Solve	for	I	to	get	2.0	A.

20	.				C	—The	intrinsic	property	of	the	light	bulb	is	resistance	;	the	power
dissipated	by	a	bulb	depends	on	its	voltage	and	current.	When	the	bulbs	are
connected	to	the	100-V	source,	we	can	use	the	expression	for	power	P	=	V	2
/R	to	see	that	the	bulb	rated	at	50	watts	has	twice	the	resistance	of	the	other
bulb.	Now	in	series,	the	bulbs	carry	the	same	current.	Power	is	also	I	2	R;
thus	the	50-watt	bulb	with	twice	the	resistance	dissipates	twice	the	power,
and	is	twice	as	bright.

21	.				E	—The	electron	bends	downward	by	the	right-hand	rule	for	a	charge	in	a
B	field—point	to	the	right,	curl	fingers	into	the	page,	and	the	thumb	points
up	the	page.	But	the	electron’s	negative	charge	changes	the	force	to	down
the	page.	The	path	is	a	circle	because	the	direction	of	the	force	continually
changes,	always	pointing	perpendicular	to	the	electron’s	velocity.	Thus,	the
force	on	the	electron	is	a	centripetal	force.

22	.				A	—This	is	one	of	the	important	consequences	of	Ampére’s	law.	The
magnetic	field	inside	the	donut	is	always	along	the	axis	of	the	donut,	so	the
symmetry	demands	of	Ampére’s	law	are	met.	If	we	draw	an	“Ampérean
Loop”	around	point	P	but	inside	r	1	,	this	loop	encloses	no	current;	thus	the
magnetic	field	must	be	zero.

23	.				C	—The	magnetic	field	due	to	the	wire	at	the	position	of	the	electron	is
into	the	page.	Now	use	the	other	right-hand	rule,	the	one	for	the	force	on	a
charged	particle	in	a	magnetic	field.	If	the	charge	moves	down	the	page,
then	the	force	on	a	positive	charge	would	be	to	the	right,	but	the	force	on	a
(negative)	electron	would	be	left,	toward	the	wire.

24	.				C	—A	positive	charge	experiences	a	force	in	the	direction	of	an	electric
field,	and	perpendicular	to	a	magnetic	field;	but	the	direction	of	a	force	is
not	necessarily	the	direction	of	motion.

25	.				A	—The	electric	field	due	to	any	finite-sized	charge	distribution	drops	off



as	1/r	2	a	long	distance	away	because	if	you	go	far	enough	away,	the	charge
looks	like	a	point	charge.	This	is	not	true	for	infinite	charge	distributions,
though.	The	magnetic	field	due	to	an	infinitely	long	wire	is	given	by

not	proportional	to	1/r	2	;	the	magnetic	field	produced	by	a	wire	around	a
torus	is	zero	outside	the	torus	by	Ampére’s	law.

26	.				C	—The	magnetic	field	produced	by	a	single	loop	of	wire	at	the	center	of
the	loop	is	directly	out	of	the	loop.	A	solenoid	is	a	conglomeration	of	many
loops	in	a	row,	producing	a	magnetic	field	that	is	uniform	and	along	the
axis	of	the	solenoid.	So,	the	proton	will	be	traveling	parallel	to	the	magnetic
field.	By	F	=	qvB	sin	θ	,	the	angle	between	the	field	and	the	velocity	is	zero,
producing	no	force	on	the	proton.	The	proton	continues	its	straight-line
motion	by	Newton’s	first	law.

27	.				E	—By	the	right-hand	rule	for	the	force	on	a	charged	particle	in	a
magnetic	field,	particle	C	must	be	neutral,	particle	B	must	be	positively
charged,	and	particle	A	must	be	negatively	charged.	Charge	B	must	be	more
massive	than	charge	A	because	it	resists	the	change	in	its	motion	more	than
A.	A	proton	is	positively	charged	and	more	massive	than	the	electron;	the
neutron	is	not	charged.

28	.				E	—The	force	on	the	positive	charge	is	upward;	the	force	on	the	negative
charge	is	downward.	These	forces	will	tend	to	rotate	the	dipole	clockwise,
so	only	A	or	E	could	be	right.	Because	the	charges	and	velocities	are	equal,
the	magnetic	force	on	each	=	qvB	and	is	the	same.	So,	there	is	no	net	force
on	the	dipole.	(Yes,	no	net	force,	even	though	it	continues	to	move	to	the
left.)

29	.				D	—The	centripetal	force	keeping	the	electrons	in	a	circle	is	provided	by
the	magnetic	force.	So	set	qvB	=	mv	2	/r	.	Solve	to	get	r	=	(mv	)/(qB	).	Just
look	at	orders	of	magnitude	now:	r	=	(10−31	kg)	(107	m/s)/(10−19	C)(10−5

T).	This	gives	r	=	1024	/1024	=	100	m	∼	1	m.

30	.				E	—An	element	of	current	produces	a	magnetic	field	that	wraps	around
the	current	element,	pointing	out	of	the	page	above	the	current	and	into	the



page	below.	But	right	in	front	(or	anywhere	along	the	axis	of	the	current),
the	current	element	produces	no	magnetic	field	at	all.

31	.				D	—A	long	way	from	the	hole,	the	magnet	produces	very	little	flux,	and
that	flux	doesn’t	change	much,	so	very	little	current	is	induced.	As	the	north
end	approaches	the	hole,	the	magnetic	field	points	down.	The	flux	is
increasing	because	the	field	through	the	wire	gets	stronger	with	the
approach	of	the	magnet;	so,	point	your	right	thumb	upward	(in	the	direction
of	decreasing	flux)	and	curl	your	fingers.	You	find	the	current	flows
counterclockwise,	defined	as	positive.	Only	A	or	D	could	be	correct.	Now
consider	what	happens	when	the	magnet	leaves	the	loop.	The	south	end
descends	away	from	the	loop.	The	magnetic	field	still	points	down,	into	the
south	end	of	the	magnet,	but	now	the	flux	is	decreasing	.	So	point	your
right	thumb	down	(in	the	direction	of	decreasing	flux)	and	curl	your	fingers.
Current	now	flows	clockwise,	as	indicated	in	choice	D.	(While	the	magnet
is	going	through	the	loop,	current	goes	to	zero	because	the	magnetic	field	of
the	bar	magnet	is	reasonably	constant	near	the	center	of	the	magnet.)

32	.				A	—You	remember	the	equation	for	the	induced	EMF	in	a	moving
rectangular	loop,	ε	=	Blv	.	Here	l	represents	the	length	of	the	wire	that
doesn’t	change	within	the	field;	dimension	a	in	the	diagram.	So	the	answer
is	either	A	or	C.	To	find	the	direction	of	induced	current,	use	Lenz’s	law:
The	field	points	out	of	the	page,	but	the	flux	through	the	loop	is	increasing
as	more	of	the	loop	enters	the	field.	So,	point	your	right	thumb	into	the	page
(in	the	direction	of	decreasing	flux)	and	curl	your	fingers;	you	find	the
current	is	clockwise,	or	left	to	right	across	the	resistor.

33	.				D	—Start	by	finding	the	direction	of	the	induced	current	in	the	wire	using
Lenz’s	law:	the	magnetic	field	is	out	of	the	page.	The	flux	increases
because	the	field	strength	increases.	So	point	your	right	thumb	into	the
page,	and	curl	your	fingers	to	find	the	current	flowing	clockwise,	or	south
in	the	wire.	Now	use	the	right-hand	rule	for	the	force	on	moving	charges	in
a	magnetic	field	(remembering	that	a	current	is	the	flow	of	positive	charge).
Point	down	the	page,	curl	your	fingers	out	of	the	page,	and	the	force	must
be	to	the	west.

34	.				C	—There	is	clearly	nonzero	flux	because	the	field	does	pass	through	the
wire	loop.	The	flux	is	not	BA	,	though,	because	the	field	does	not	go
straight	through	the	loop—the	field	hits	the	loop	at	an	angle.	So	is	the



answer	BA	cos	30°,	using	the	angle	of	the	plane;	or	BA	cos	60°,	using	the
angle	from	the	vertical?	To	figure	it	out,	consider	the	extreme	case.	If	the
incline	were	at	zero	degrees,	there	would	be	zero	flux	through	the	loop.
Then	the	flux	would	be	BA	cos	90°,	because	cos	90°is	zero,	and	cos	0°	is
one.	So	don’t	use	the	angle	of	the	plane,	use	the	angle	from	the	vertical,	BA
cos	60°.

35	.				C	—The	inductor	resists	changes	in	current.	But	after	a	long	time,	the
current	reaches	steady	state,	meaning	the	current	does	not	change;	thus	the
inductor,	after	a	long	time,	might	as	well	be	just	a	straight	wire.	The	battery
will	still	provide	current	I	,	of	which	half	goes	through	each	equal	resistor.



Physics	C—Practice	Exams—Free-Response
Solutions

Notes	on	grading	your	free-response	section

For	answers	that	are	numerical,	or	in	equation	form:

*For	each	part	of	the	problem,	look	to	see	if	you	got	the	right	answer.	If
you	did,	and	you	showed	any	reasonable	(and	correct)	work,	give	yourself
full	credit	for	that	part.	It’s	okay	if	you	didn’t	explicitly	show	EVERY	step,
as	long	as	some	steps	are	indicated	and	you	got	the	right	answer.	However:
*If	you	got	the	WRONG	answer,	then	look	to	see	if	you	earned	partial
credit.	Give	yourself	points	for	each	step	toward	the	answer	as	indicated	in
the	rubrics	below.	Without	the	correct	answer,	you	must	show	each
intermediate	step	explicitly	in	order	to	earn	the	point	for	that	step.	(See
why	it’s	so	important	to	show	your	work?)
*If	you’re	off	by	a	decimal	place	or	two,	not	to	worry—you	get	credit
anyway,	as	long	as	your	approach	to	the	problem	was	legitimate.	This	isn’t
a	math	test.	You’re	not	being	evaluated	on	your	rounding	and	calculator-
use	skills.
*You	do	not	have	to	simplify	expressions	in	variables	all	the	way.	Square
roots	in	the	denominator	are	fine;	fractions	in	nonsimplified	form	are	fine.
As	long	as	you’ve	solved	properly	for	the	requested	variable,	and	as	long
as	your	answer	is	algebraically	equivalent	to	the	rubric’s,	you	earn	credit.
*Wrong,	but	consistent:	Often	you	need	to	use	the	answer	to	part	(a)	in
order	to	solve	part	(b).	But	you	might	have	the	answer	to	part	(a)	wrong.	If
you	follow	the	correct	procedure	for	part	(b),	plugging	in	your	incorrect
answer,	then	you	will	usually	receive	full	credit	for	part	(b).	The	major
exceptions	are	when	your	answer	to	part	(a)	is	unreasonable	(say,	a	car
moving	at	105	m/s,	or	a	distance	between	two	cars	equal	to	10−100	meters),
or	when	your	answer	to	part	(a)	makes	the	rest	of	the	problem	trivial	or
irrelevant.

For	answers	that	require	justification:



*Obviously	your	answer	will	not	match	the	rubric	word-for-word.	If	the
general	gist	is	there,	you	get	credit.
*But	the	reader	is	not	allowed	to	interpret	for	the	student.	If	your	response
is	vague	or	ambiguous,	you	will	NOT	get	credit.
*If	your	response	consists	of	both	correct	and	incorrect	parts,	you	will
usually	not	receive	credit.	It	is	not	possible	to	try	two	answers,	hoping	that
one	of	them	is	right.	 	(See	why	it’s	so	important	to	be	concise?)

CM	1
(a)
1	pt:				Write	Newton’s	second	law	for	the	direction	along	the	plane	for	each

block.	Call	the	mass	of	each	identical	block	m	.
1	pt:				For	the	right	block,	T	−	mg	sin	30	=	ma	.
1	pt:				For	the	left	block	mg	sin	60	−	T	=	ma	.
1	pt:				Here	the	directions	chosen	are	consistent,	so	that	forces	that

accelerate	the	system	to	the	left	are	positive.	(However,	you	earn	this
point	as	long	as	directions	are	consistent.)

1	pt:				Solve	these	equations	simultaneously	(it’s	easiest	just	to	add	them
together).

1	pt:				a	=	1.8	m/s2	.	(An	answer	of	a	=	−1.8	m/s2	is	incorrect	because	the
magnitude	of	a	vector	can	not	be	negative.)
(Alternatively,	you	can	just	recognize	that	mg	sin	60	pulls	left,	while
mg	cos	60	pulls	right,	and	use	Newton’s	second	law	directly	on	the
combined	system.	Be	careful,	though,	because	the	mass	of	the
ENTIRE	system	is	10	kg,	not	5	kg!)

(b)
1	pt:				Just	plug	the	acceleration	back	into	one	of	the	original	Newton’s

second	law	equations	from	part	(a).
1	pt:				You	get	T	=	34	N.
(c)

For	parts	(c)	and	(d),	points	are	awarded	principally	for	showing	the
difference	that	friction	makes	in	the	solution.	You	earn	credit	for
properly	accounting	for	this	difference,	even	if	your	overall	solution
is	wrong,	as	long	as	you	followed	a	similar	process	to	parts	(a)	and
(b).

1	pt:				Following	the	solution	for	part	(a),	this	time	the	right	block’s



equation	becomes	T	−	mg	sin	30	−	μFN	,	where	μ	is	the	coefficient
of	friction,	given	as	0.10.

1	pt:				The	normal	force	is	equal	to	mg	cos	30.
1	pt:				The	left	block’s	equation	is	the	same	as	before,	mg	sin	60	−	T	=	ma	.
1	pt:				Eliminating	T	and	solving,	we	get	1.4	m/s2	.	This	is	reasonable

because	we	get	a	smaller	acceleration	when	friction	is	included,	as
expected.	[This	answer	point	is	awarded	for	ANY	nonzero
acceleration	that	is	less	than	that	calculated	in	part	(a).]

(d)
1	pt:				Plugging	back	into	one	of	the	equations	in	part	(c),	we	find	T	=	36	N

this	time,	or	whatever	tension	is	consistent	with	part	(c).
1	pt:				Awarded	for	ANY	nonzero	tension	greater	than	that	found	in	part

(b).
1	pt:				For	proper	units	on	at	least	one	acceleration	and	one	tension,	and	no

incorrect	units.

CM	2

(a)
1	pt:				The	weight	of	the	ball	acts	down.
1	pt:				The	normal	force	acts	up	and	left,	perpendicular	to	the	surface	of	the

glass.
1	pt:				No	other	forces	act.
(b)
1	pt:				The	normal	force	can	be	broken	into	vertical	and	horizontal



components,	where	the	vertical	is	FN	cos	θ	and	the	horizontal	is	FN
sin	θ	.	(The	vertical	direction	goes	with	cosine	here	because	θ	is
measured	from	the	vertical.)

1	pt:				The	net	vertical	force	is	zero	because	the	ball	doesn’t	rise	or	fall	on
the	glass.	Setting	up	forces	equal	to	down,	FN	cos	θ	=	mg	.

1	pt:				The	horizontal	force	is	a	centripetal	force,	so	FN	sin	θ	=	mv	2	/r	sin	θ
.

1	pt:				For	using	r	sin	θ	and	not	just	r	.	(Why?	Because	you	need	to	use	the
radius	of	the	actual	circular	motion,	which	is	not	the	same	as	the
radius	of	the	sphere.)

1	pt:				The	tangential	speed	“v	”	is	the	circumference	of	the	circular	motion
divided	by	the	period.	Since	period	is	1/f	,	and	because	the	radius	of
the	circular	motion	is	r	sin	θ	,	this	speed	v	=	2πr	sin	θf	.

1	pt:				Now	divide	the	vertical	and	horizontal	force	equations	to	get	rid	of
the	FN	term:

sin	θ	/cos	θ	=	v	2	/r	sin	θg	.

1	pt:				Plug	in	the	speed	and	the	sin	θ	terms	cancel,	leaving	cos	θ	=	g	/4π2

rf	2	.
1	pt:				Plugging	in	the	given	values	(including	r	=	0.08	m),	θ	=	83°.
(c)
1	pt:				From	part	(a),	the	linear	speed	is	2πr	sin	θf	.
1	pt:				Plugging	in	values,	the	speed	is	2.5	m/s.

(If	you	didn’t	get	the	point	in	part	(a)	for	figuring	out	how	to
calculate	linear	speed,	but	you	do	it	right	here,	then	you	can	earn	the
point	here.)

(d)
1	pt:				The	angle	will	not	be	affected.
1	pt:				Since	the	mass	of	the	ball	does	not	appear	in	the	equation	to

calculate	the	angle	in	part	(b),	the	mass	does	not	affect	the	angle.

CM	3



(a)
1	pt:				The	net	force	is	at	an	angle	down	and	to	the	left,	perpendicular	to	the

rod.
1	pt:				Because	the	ball	is	instantaneously	at	rest,	the	direction	of	the

velocity	in	the	next	instant	must	also	be	the	direction	of	the
acceleration;	this	direction	is	along	the	arc	of	the	ball’s	motion.

(b)
1	pt:				The	magnitude	of	the	net	force	is	mg	sin	θ	.
1	pt:				It’s	easiest	to	use	a	limiting	argument:	When	θ	=	90°,	then	the	net

force	would	be	simply	the	weight	of	the	ball,	mg.	mg	sin	90°	=	mg,
while	mg	cos	90°	=	zero;	hence	the	correct	answer.

(c)
1	pt:				The	force	on	the	mass	is	−mg	sin	θ	,	the	negative	arising	because	the

force	is	always	opposite	the	displacement.
1	pt:				Potential	energy	is	derived	from	force	by	U	=	–∫Fdx
1	pt:				The	distance	displaced	x	=	Lθ	.
1	pt:				The	differential	dx	becomes	L	dθ	.
1	pt:				The	integral	becomes	∫mgL	sin	θ	dθ	,	which

evaluates	to	−mgL	cos	θ	.	(Here	the	constant	of	integration	can	be
taken	to	be	any	value	at	all	because	the	zero	of	potential	energy	can
be	chosen	arbitrarily.)
[Alternate	solution:	Using	geometry,	it	can	be	found	that	the	height
of	the	bob	above	the	lowest	point	is	L	−	L	cos	θ	.	Thus,	the	potential
energy	is	mgh	=	mg	(L	−	L	cos	θ	).	This	gives	the	same	answer,	but
has	defined	the	arbitrary	constant	of	integration	as	mgL	.]



(d)
1	pt:				The	graph	should	look	like	some	sort	of	sine	or	cosine	function,

oscillating	smoothly.	The	graph	may	be	shifted	up	or	down	and	still
receive	full	credit.

1	pt:				The	graph	should	have	an	amplitude	of	mgL	,	though	the	graph	can
be	shifted	arbitrarily	up	or	down	on	the	vertical	axis.

1	pt:				The	graph	should	have	a	minimum	at	θ	=	0.
1	pt:				The	graph	should	have	a	maximum	at	θ	=	180°.
(e)
1	pt:				For	simple	harmonic	motion,	the	restoring	force	must	be	linearly

proportional	to	the	displacement,	like	F	=	−kx	.	This	yields	an
energy	function	that	is	quadratic:	−(−kx	)·dx	integrates	to	give	U	=	1

/	2	kx	2	.	The	graph	of	the	energy	of	a	simple	harmonic	oscillator	is,
thus,	parabolic.

1	pt:				Near	the	θ	=	0	position,	the	graph	in	part	(e)	is	shaped	much	like	a
parabola,	only	deviating	from	a	parabolic	shape	at	large	angles;	so
the	pendulum	is	a	simple	harmonic	oscillator	as	long	as	the	energy
graph	approximates	a	parabola.



AP	Physics	C—Mechanics
Full	Exam	Scoring

Multiple	Choice:	Number	Correct______(35	max)
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E&M	1

(a)
1	pt:	Inside	a	conductor,	the	electric	field	must	always	be	zero.	E	=	0.
1	pt:	Because	we	have	spherical	symmetry,	use	Gauss’s	law.
1	pt:	The	area	of	a	Gaussian	surface	in	this	region	is	4πr	2	.	The	charge

enclosed	by	this	surface	is	Q	.
1	pt:	So,	E	=	Q	enclosed	/ε	o	A	=	Q	/4π	ε	o	r	2	.
1	pt:	Inside	a	conductor,	the	electric	field	must	always	be	zero.	E	=	0.
2	pts:	Just	as	in	part	2,	use	Gauss’s	law,	but	now	the	charge	enclosed	is	3Q.

E	=	3Q	/4π	ε	o	r	2	.
(b)
1	pt:	−Q	is	on	the	inner	surface.
1	pt:	+3Q	is	on	the	outer	surface.
1	pt:	Because	E	=	0	inside	the	outer	shell,	a	Gaussian	surface	inside	this

shell	must	enclose	zero	charge,	so	−Q	must	be	on	the	inside	surface
to	cancel	the	+Q	on	the	small	sphere.	Then	to	keep	the	total	charge
of	the	shell	equal	to	+2Q	,	+3Q	must	go	to	the	outer	surface.

(c)
1	pt:	Because	we	have	spherical	symmetry,	the	potential	due	to	both

spheres	is	3Q	/4π	ε	o	r	,	with	potential	equal	to	zero	an	infinite
distance	away.

1	pt:	So	at	position	R	3	,	the	potential	is	3Q	/4π	ε	o	R	3	.	(Since	E	=	0	inside
the	shell,	V	is	the	same	value	everywhere	in	the	shell.)

(d)
1	pt:	Integrate	the	electric	field	between	R	1	and	R	2	to	get	V	=	Q	/4π	ε	o	r	+

a	constant	of	integration.
1	pt:	To	find	that	constant,	we	know	that	V	(R	2	)	was	found	in	part	(c),	and

is	3Q	/4π	ε	o	R	3	.	Thus,	the	constant	is



1	pt:	Then,	potential	at	R	1	=	Q	/4π	ε	o	R	1	+	the	constant	of	integration.

E&M	2

(a)
1	pt:	The	series	capacitors	add	inversely,

so	C	eq	for	the	series	capacitors	is	3	μ	F.
1	pt:	The	parallel	capacitor	just	adds	in	algebraically,	so	the	equivalent

capacitance	for	the	whole	system	is	5	μ	F.
(b)
1	pt:	After	a	long	time,	the	resistor	is	irrelevant;	no	current	flows	because

the	fully	charged	capacitors	block	direct	current.
1	pt:	The	voltage	across	C	3	is	10	V	(because	there’s	no	voltage	drop	across

the	resistor	without	any	current).
1	pt:	By	Q	=	CV	the	charge	on	C	3	is	20	μ	C.
1	pt:	Treating	C	1	and	C	2	in	series;	the	equivalent	capacitance	is	3	μ	F,	the

voltage	is	10	V	(in	parallel	with	C	3	).
1	pt:	The	charge	on	the	equivalent	capacitance	of	C	1	and	C	2	is	30	μ	C;

thus	the	charge	on	C	1	=	30	μ	C,	and	the	charge	on	C	2	is	also	30	μ	C
(charge	on	series	capacitors	is	the	same).

1	pt:	Using	Q	=	CV	,	the	voltage	across	C	1	is	7.5	V.
1	pt:	Using	Q	=	CV	,	the	voltage	across	C	2	is	2.5	V.
(c)
1	pt:	For	a	graph	that	starts	at	Q	=	0.
1	pt:	For	a	graph	that	asymptotically	approaches	20	μ	C	(or	whatever

charge	was	calculated	for	C	3	in	part	b).
1	pt:	For	calculating	the	time	constant	of	the	circuit,	RC	=	5	s.
1	pt:	For	the	graph	reaching	about	63%	of	its	maximum	charge	after	one

time	constant.
(d)



1	pt:	For	recognizing	that	the	voltage	does	not	change.
1	pt:	For	explaining	that	if	voltage	changed,	then	Kirchoff’s	voltage	rule

would	not	be	valid	around	a	loop	including	C	3	and	the	battery	(or
explaining	that	voltage	is	the	same	across	parallel	components,	so	if
one	is	disconnected	the	other’s	voltage	is	unaffected).

E&M	3

(a)
1	pt:	For	placing	the	wire	along	a	north–south	line.
1	pt:	The	wire	could	be	placed	above	the	compass,	with	the	current

traveling	due	north.	(The	wire	also	could	be	placed	underneath	the
compass,	with	current	traveling	due	south.)	(Points	can	also	be
earned	for	an	alternative	correct	solution:	for	example,	the	wire
could	be	placed	perpendicular	to	the	face	of	the	compass	(just	south
of	it),	with	the	current	running	up.)

(b)
1	pt:	The	B	field	due	to	Earth	plus	the	B	field	caused	by	the	wire,	when

added	together	as	vectors,	must	give	a	resultant	direction	of	48°	west
of	north.

1	pt:	Placing	these	vectors	tail-to-tip,	as	shown	below,	tan	48°	=	B	wire	/B
Earth	.

1	pt:	So	B	wire	=	B	Earth	tan	48°	=	5.6	×	10−5	T.
(c)
1	pt:	The	magnetic	field	due	to	a	long,	straight,	current-carrying	wire	is



given	by

where	r	is	the	distance	from	the	wire	to	the	field	point,	represented
in	this	problem	by	d	.

1	pt:	So	B	is	proportional	to	1/d;	this	results	in	a	hyperbolic	graph.
1	pt:	This	graph	should	be	asymptotic	to	both	the	vertical	and	horizontal

axes.
(d)
1	pt:	Place	1/d	on	the	horizontal	axis.
2	pts:	The	equation	for	the	field	due	the	wire	can	be	written

Everything	in	the	first	set	of	parentheses	is	constant.	So,	this
equation	is	of	the	form	y	=	mx	,	which	is	the	equation	of	a	line,	if	1/d
is	put	on	the	x	-axis	of	the	graph.	(1	point	can	be	earned	for	a
partially	complete	explanation.	On	this	problem,	no	points	can	be
earned	for	justification	if	the	answer	is	incorrect.)

(e)
1	pt:	The	slope	of	the	graph,	from	the	equation	above,	is

1	pt:	For	plugging	in	values	correctly,	including	0.5	A	or	500	mA.
1	pt:	For	units	on	the	slope	equivalent	to	magnetic	field	times	distance	(i.e.,

T·m,	T·cm,	mT·m,	etc.).
1	pt:	For	a	correct	answer,	complete	with	correct	units:	1.0	×	10−7	Tm,	or

1.0	×	10−4	mT·m.
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CONSTANTS



PHYSICS	C	EQUATIONS

Read	Chapter	6	about	memorizing	equations	for	more	help	with	learning	not
only	what	the	equations	say,	but	also	what	they	mean.

You’ll	notice	that	the	C	equation	sheet	often	expresses	relationships	in
calculus	terms.	Don’t	let	that	confuse	you;	for	example,	though	impulse	is
expressed	as	an	integral	of	force	with	respect	to	time,	you	should	also	interpret
that	as	force	times	time	if	the	force	is	constant,	or	as	the	area	under	a	force	vs.
time	graph.

Remember,	your	textbook	might	use	slightly	different	symbols.

MECHANICS



ELECTRICITY	AND	MAGNETISM





FOUR-MINUTE	DRILL	PROMPTS

The	lists	that	follow	are	designed	to	help	you	study	equations.	Each	prompt
refers	to	a	specific	equation	on	the	AP	Equations	sheet	(we’ve	listed	the	prompts
in	the	same	order	in	which	the	equations	appear	on	the	Equations	sheet).	So,	for
example,	the	prompt	“Net	force”	refers	to	the	equation,	“F	net	=	ma	.”

There	are	several	ways	to	use	these	prompts.	First,	you	can	use	them	as	a
self-test:	For	each	prompt,	write	down	the	corresponding	equation	on	a	separate
sheet	of	paper.	Then	check	the	equations	you	wrote	down	against	the	AP
Equations	sheet	to	see	if	you	got	any	wrong.	You	can	also	use	these	prompts
when	you	study	with	a	friend:	Have	your	friend	read	the	prompts	to	you,	and	you
respond	by	reciting	the	appropriate	equation.	Try	to	go	through	the	list	as	fast	as
possible	without	making	a	mistake.	Last,	your	physics	teacher	can	use	these
prompts	to	lead	your	class	through	a	four-minute	drill,	which	is	an	activity	we
describe	in	Chapter	6	.

Mechanics
1st	kinematics	equation
2nd	kinematics	equation
3rd	kinematics	equation
Net	force
Force	in	terms	of	momentum
Impulse
Definition	of	momentum
Force	of	friction
Work
Kinetic	energy
Power
Power—alternate	expression
Gravitational	potential	energy	near	a	planet



Centripetal	acceleration
Torque
Newton’s	second	law	for	rotation
Definition	of	rotational	inertia
Position	of	the	center	of	mass
Conversion	between	linear	and	angular	velocity
Angular	momentum
Rotational	kinetic	energy
1st	rotational	kinematics	equation
2nd	rotational	kinematics	equation
Force	of	a	spring	(The	negative	sign	reminds	you	that	the	spring	force	is	a

restoring	force,	always	acting	toward	the	equilibrium	point.)
Potential	energy	of	a	spring
Period	in	terms	of	angular	frequency	and	standard	frequency
Period	of	a	mass	on	a	spring
Period	of	a	pendulum
Gravitational	force	between	two	massive	objects
Gravitational	potential	energy	between	two	massive	objects	(Don’t	use

unless	an	object	is	far	away	from	a	planet’s	surface.)

Electricity	and	Magnetism
Electric	force	between	two	point	charges
Definition	of	electric	field
Gauss’s	law	(Though	you	should	never	actually	take	an	integral	when	using

this.)
How	to	find	electric	field	in	terms	of	potential
Potential	energy	in	terms	of	potential,	and	then	potential	energy	between	two

point	charges	(This	line	on	the	equation	sheet	really	has	two	different
equations.	PE	=	qV	is	always	valid,	but	PE	=	kqq/r	is	only	valid	between
two	point	charges.)

The	electric	potential	at	some	point	due	to	surrounding	point	charges
Definition	of	capacitance
Capacitance	of	a	parallel-plate	capacitor	with	a	dielectric	substance	of

constant	κ	added
How	to	add	parallel	capacitors
How	to	add	series	capacitors



Definition	of	current
Energy	stored	on	a	capacitor
Resistance	of	a	wire
Ohm’s	law
How	to	add	series	resistors
How	to	add	parallel	resistors
Power	in	an	electrical	circuit
Magnetic	force	on	a	charge
Ampére’s	law
Magnetic	force	on	a	wire
Magnetic	field	of	a	solenoid
Magnetic	flux
Induced	EMF
Voltage	across	an	inductor
Energy	stored	in	an	inductor



WEB	SITES

The	Internet	offers	some	great	resources	for	preparing	for	the	AP	Physics	exam.

•			Your	textbook	may	have	an	associated	Web	site	…	if	so,	check	it	out!	For
example,	Paul	A.	Tipler’s	Physics	C-level	text	provides	this	Web	site:
http://www.whfreeman.com/tipler4e/

•			Of	course,	the	official	site	of	the	College	Board,	www.collegeboard.com	,	has
administrative	information	and	test-taking	hints,	as	well	as	contact
information	for	the	organization	that	actually	is	in	charge	of	the	exam.

•			Did	you	enjoy	your	first	taste	of	physics?	If	so,	you	can	try	your	hand	at
physics	debating.	The	United	States	Association	for	Young	Physicists
Tournaments	hosts	a	national	tournament	which	consists	of	“physics	fights,”
or	debates,	over	experimental	research	projects.	Check	out	www.usaypt.org
for	details.

•			The	author	writes	the	country’s	leading	physics	teaching	blog,	available	at
jacobsphysics.blogspot.com.	Students	and	teachers	can	obtain	and	share	ideas
at	this	site.

•			Having	trouble	solving	calculus	problems	associated	with	Physics	C,
especially	differential	equations?	Don’t	spend	a	lot	of	time	solving	these.	Use
www.wolfranalpha.com	to	get	the	solution	spit	out	for	you.	Sure,	you	can’t
use	this	on	the	exam,	but	it’s	worth	using	on	homework	to	speed	or	check
your	solutions.	Physics	is	generally	more	about	setting	up	the	problem
correctly	than	carrying	out	the	mathematics	anyway.

http://www.whfreeman.com/tipler4e/
http://www.collegeboard.com
http://www.usaypt.org
http://www.wolfranalpha.com


GLOSSARY

acceleration	—the	change	in	an	object’s	velocity	divided	by	the	time	it	took	to
make	that	change;	equal	to	the	derivative	(slope)	of	an	object’s	velocity–time
function

amplitude	—the	maximum	displacement	from	the	equilibrium	position	during	a
cycle	of	periodic	motion;	also,	the	height	of	a	wave

angular	momentum	—the	amount	of	effort	it	would	take	to	make	a	rotating
object	stop	spinning

atom	—the	fundamental	unit	of	matter;	includes	protons	and	neutrons	in	a	small
nucleus,	surrounded	by	electrons

atomic	mass	unit	(amu)	—the	mass	of	a	proton;	also	the	mass	of	a	neutron
average	speed	—the	distance	an	object	travels	divided	by	the	time	it	took	to
travel	that	distance

capacitor	—a	charge-storage	device,	often	used	in	circuits
centrifugal	force	—a	made-up	force;	when	discussing	circular	motion,	only	talk
about	“centripetal”	forces

centripetal	force	—the	force	keeping	an	object	in	uniform	circular	motion
coefficient	of	friction	—the	ratio	of	the	friction	force	to	the	normal	force.	The
coefficient	of	static	friction	is	used	when	an	object	has	no	velocity	relative	to
the	surface	it	is	in	contact	with;	the	coefficient	of	kinetic	friction	is	used	for	a
moving	object

concave	lens	—a	translucent	object	that	makes	the	light	rays	passing	through	it
diverge

conservative	force	—a	force	that	acts	on	an	object	without	causing	the
dissipation	of	that	object’s	energy	in	the	form	of	heat

current	—the	flow	of	positive	charge	in	a	circuit;	the	amount	of	charge	passing
a	given	point	per	unit	time

dipole	—something,	usually	a	set	of	charges,	with	two	nonidentical	ends
direction	—the	orientation	of	a	vector



displacement	—a	vector	quantity	describing	how	far	an	object	moved
elastic	collision	—a	collision	in	which	kinetic	energy	is	conserved
electric	field	—a	property	of	a	region	of	space	that	affects	charged	objects	in
that	particular	region

electric	flux	—the	amount	of	electric	field	that	penetrates	a	certain	area
electric	potential	—potential	energy	provided	by	an	electric	field	per	unit
charge

electromagnetic	induction	—the	production	of	a	current	by	a	changing
magnetic	field

electron	—a	subatomic	particle	that	carries	a	negative	charge
energy	—the	ability	to	do	work
equilibrium	—when	the	net	force	and	net	torque	on	an	object	equal	zero
equipotential	lines	—lines	that	illustrate	every	point	at	which	a	charged	particle
would	experience	a	given	potential

field	—a	property	of	a	region	of	space	that	can	affect	objects	found	in	that
particular	region

free-body	diagram	—a	picture	that	represents	one	or	more	objects,	along	with
the	forces	acting	on	those	objects

frequency	—the	number	of	cycles	per	second	of	periodic	motion;	also,	the
number	of	wavelengths	of	a	wave	passing	a	certain	point	per	second

friction	—a	force	acting	parallel	to	two	surfaces	in	contact;	if	an	object	moves,
the	friction	force	always	acts	opposite	the	direction	of	motion

fulcrum	—the	point	about	which	an	object	rotates	g	—free-fall	acceleration	near
the	Earth’s	surface,	about	10	m/s2

induced	EMF	—the	potential	difference	created	by	a	changing	magnetic	flux
that	causes	a	current	to	flow	in	a	wire;	EMF	stands	for	“electro-motive	force,”
but	the	units	of	EMF	are	volts	.

inductance	—the	property	of	an	inductor	that	describes	how	good	it	is	at
resisting	changes	in	current	in	a	circuit

inductor	—a	coil	in	a	circuit	that	makes	use	of	induced	EMF	to	resist	changes	in
current	in	the	circuit

inelastic	collision	—a	collision	in	which	kinetic	energy	is	not	conserved,	as
opposed	to	an	elastic	collision,	in	which	the	total	kinetic	energy	of	all	objects
is	the	same	before	and	after	the	collision

inertia	—the	tendency	for	a	massive	object	to	resist	a	change	in	its	velocity
internal	energy	—the	sum	of	the	kinetic	energies	of	each	molecule	of	a
substance



ion	—an	electrically	charged	atom	or	molecule
kinetic	energy	—energy	of	motion
Kirchoff’s	laws	—in	a	circuit,	1)	at	any	junction,	the	current	entering	equals	the
current	leaving;	2)	the	sum	of	the	voltages	around	a	closed	loop	is	zero

Lenz’s	law	—the	direction	of	the	current	induced	by	a	changing	magnetic	flux
creates	a	magnetic	field	that	opposes	the	change	in	flux

magnetic	field	—a	property	of	a	region	of	space	that	causes	magnets	and
moving	charges	to	experience	a	force

magnetic	flux	—the	amount	of	magnetic	field	that	penetrates	an	area
magnitude	—how	much	of	a	quantity	is	present;	see	“scalar”	and	“vector”
mass	spectrometer	—a	device	used	to	determine	the	mass	of	a	particle
rotational	inertia	—the	rotational	equivalent	of	mass
momentum	—the	amount	of	“oomph”	an	object	has	in	a	collision,	equal	to	an
object’s	mass	multiplied	by	that	object’s	velocity

net	force	—the	vector	sum	of	all	the	forces	acting	on	an	object
normal	force	—a	force	that	acts	perpendicular	to	the	surface	on	which	an	object
rests

nucleus	—the	small,	dense	core	of	an	atom,	made	of	protons	and	neutrons
oscillation	—motion	of	an	object	that	regularly	repeats	itself	over	the	same	path
parallel	—the	arrangement	of	elements	in	a	circuit	so	that	the	charge	that	flows
through	one	element	does	not	flow	through	the	others

perfectly	inelastic	collision	—a	collision	in	which	the	colliding	objects	stick
together	after	impact

period	—the	time	it	takes	for	an	object	to	pass	through	one	cycle	of	periodic
motion;	also,	the	time	for	a	wave	to	propagate	by	a	distance	of	one
wavelength

potential	energy	—energy	of	position
power	—the	amount	of	work	done	divided	by	the	time	it	took	to	do	that	work;
also,	in	a	circuit,	equal	to	the	product	of	the	current	flowing	through	a	resistor
and	the	voltage	drop	across	that	resistor

resistance	—a	property	of	a	circuit	that	resists	the	flow	of	current
resistor	—something	put	in	a	circuit	to	increase	its	resistance
restoring	force	—a	force	that	restores	an	oscillating	object	to	its	equilibrium
position

scalar	—a	quantity	that	has	a	magnitude	but	no	direction
series	—the	arrangement	of	elements	in	a	circuit	so	that	they	are	connected	in	a
line,	one	after	the	other



time	constant	—a	value	related	to	how	long	it	takes	to	charge	or	discharge	a
capacitor,	or	for	current	to	flow	in	an	inductor

torque	—the	application	of	a	force	at	some	distance	from	a	fulcrum;	if	the	net
torque	on	an	object	isn’t	zero,	the	object’s	rotational	velocity	will	change

vector	—a	quantity	that	has	both	magnitude	and	direction
velocity	—how	fast	an	object’s	displacement	changes;	equal	to	the	derivative
(slope)	of	an	object’s	position–time	function

weight	—the	force	due	to	gravity;	equal	to	the	mass	of	an	object	times	g	,	the
gravitational	field

work	—the	product	of	the	distance	an	object	travels	and	the	components	of	the
force	acting	on	that	object	directed	parallel	to	the	object’s	direction	of	motion

work-energy	theorem	—the	net	work	done	on	an	object	equals	that	object’s
change	in	kinetic	energy
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reading	your	text	again—you’ll	be	amazed	at	how	much	more	clear	the	text	has
become.
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•			Lederman,	L.	(1993).	The	God	Particle	.	New	York:	Dell.	(Written	by	a	Nobel
Prize–winning	experimental	physicist,	this	book	not	only	discusses	what
kinds	of	strange	subatomic	particles	exist,	but	goes	through	the	amazing	and
interesting	details	of	how	these	particles	are	discovered.)



•			Walker,	J.	(2007).	The	Flying	Circus	of	Physics	(2nd	ed.).	New	Jersey:	Wiley.
(This	book	provides	numerous	conceptual	explanations	of	physics	phenomena
that	you	have	observed.	The	classic	“Physics	of	the	world	around	you”	book.)
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